IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221011075.html
   My bibliography  Save this article

Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank

Author

Listed:
  • Jiang, Wenbing
  • Sun, Peijie
  • Li, Peng
  • Zuo, Zhongqi
  • Huang, Yonghua

Abstract

The transient heat transfer plays a leading role in the multi-layer insulation (MLI) coupled with a vapor cooled shield (VCS) used in liquid hydrogen storage tanks. However, it was not well investigated in the open literature. In this paper, a transient simulation model was established to study the dynamic thermal behavior of both the MLI and the VCS. The transient temperature profile and heat flux variation of the MLI and VCS were predicted and analyzed. In addition, the insulation performance of the combined MLI/VCS configuration was compared with the conventional MLI-only configuration when the liquid hydrogen tank underwent a periodic gas venting process. The discovered transient heat transfer characteristics of the MLI/VCS insulation could help optimize operating parameters for liquid hydrogen storage.

Suggested Citation

  • Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011075
    DOI: 10.1016/j.energy.2021.120859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yonghua & Wang, Bin & Zhou, Shaohua & Wu, Jingyi & Lei, Gang & Li, Peng & Sun, Peijie, 2017. "Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage," Energy, Elsevier, vol. 123(C), pages 487-498.
    2. Zheng, Jianpeng & Chen, Liubiao & Xu, Xiafan & Guo, Luna & Zhou, Yuan & Wang, Junjie, 2019. "A novel insulation system based on active cooling without power input for liquid hydrogen storage," Energy, Elsevier, vol. 182(C), pages 1-10.
    3. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    4. Xie, XiuBo & Hou, Chuanxin & Chen, Chunguang & Sun, Xueqin & Pang, Yu & Zhang, Yuping & Yu, Ronghai & Wang, Bing & Du, Wei, 2020. "First-principles studies in Mg-based hydrogen storage Materials: A review," Energy, Elsevier, vol. 211(C).
    5. Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Yan & Xu, Zhan & Han, Feng & Wang, Zhao & Ni, Zhonghua, 2022. "Energy control of providing cryo-compressed hydrogen for the heavy-duty trucks driving," Energy, Elsevier, vol. 242(C).
    2. Yang, Yilun & Jiang, Wenbing & Huang, Yonghua, 2023. "Experiment on transient thermodynamic behavior of a cryogenic storage tank protected by a composite insulation structure," Energy, Elsevier, vol. 270(C).
    3. Daehoon Kang & Sungho Yun & Bo-kyong Kim & Jaewon Kim & Gildong Kim & Hyunbae Lee & Sangyeol Choi, 2022. "Numerical Investigation of the Initial Charging Process of the Liquid Hydrogen Tank for Vehicles," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Kecen Li & Jie Chen & Xueqin Tian & Yujing He, 2022. "Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region," Energies, MDPI, vol. 15(24), pages 1-17, December.
    5. Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    4. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    5. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    6. Lepszy, Sebastian, 2020. "Analysis of the storage capacity and charging and discharging power in energy storage systems based on historical data on the day-ahead energy market in Poland," Energy, Elsevier, vol. 213(C).
    7. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    8. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    9. Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.
    10. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    11. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    12. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    13. Deng, B.C. & Yang, S.Q. & Xie, X.J. & Wang, Y.L. & Pan, W. & Li, Q. & Gong, L.H., 2019. "Thermal performance assessment of cryogenic transfer line with support and multilayer insulation for cryogenic fluid," Applied Energy, Elsevier, vol. 250(C), pages 895-903.
    14. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    15. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    16. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    17. Tian, Ying & Han, Jin & Bu, Yu & Qin, Chuan, 2023. "Simulation and analysis of fire and pressure reducing valve damage in on-board liquid hydrogen system of heavy-duty fuel cell trucks," Energy, Elsevier, vol. 276(C).
    18. Xinqing Xiao & Xu Zhang & Zetian Fu & Weisong Mu & Xiaoshuan Zhang, 2018. "Energy Conservation Potential Assessment Method for Table Grapes Supply Chain," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    20. Wojciech Kosman & Andrzej Rusin, 2020. "The Application of Molten Salt Energy Storage to Advance the Transition from Coal to Green Energy Power Systems," Energies, MDPI, vol. 13(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.