IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9267-d995842.html
   My bibliography  Save this article

Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region

Author

Listed:
  • Kecen Li

    (School of Electrical Engineering, Xinjiang University, Urumqi 830049, China)

  • Jie Chen

    (School of Electrical Engineering, Xinjiang University, Urumqi 830049, China)

  • Xueqin Tian

    (State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China)

  • Yujing He

    (School of Electrical Engineering, Xinjiang University, Urumqi 830049, China)

Abstract

The storage of hydrogen is important for the development of hydrogen energy, especially for the storage of liquid hydrogen, which has been receiving more and more attention recently. In order to study the thermal insulation performance of variable-density multilayer insulation (VDMLI) structures under different working conditions at liquid hydrogen temperatures without incorporating a composite structure, we established a heat transfer model based on a layer-by-layer calculation method. Then, we carried out numerical calculations to analyze the influence of the total number of layers, the thermal boundary temperature, and vacuums on the performance of MLI at liquid hydrogen temperatures. To investigate the optimization of variable-density configurations on the thermal insulation performance of VDMLI and to obtain accurate variable-density configurations, we proposed a variable-density configuration method based on the control variable method and the insertion by region method. The results indicate that the optimal variable-density configuration is the insertion of 4 layers of radiation shields in the low-density region, 15 layers in the medium-density region and 38 layers in the high-density region. Compared with a uniform-density structure, the heat flux is reduced by 8.6%.

Suggested Citation

  • Kecen Li & Jie Chen & Xueqin Tian & Yujing He, 2022. "Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region," Energies, MDPI, vol. 15(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9267-:d:995842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
    2. Khan, Irfan & Hou, Fujun & Zakari, Abdulrasheed & Tawiah, Vincent Konadu, 2021. "The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries," Energy, Elsevier, vol. 222(C).
    3. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    4. Huang, Yonghua & Wang, Bin & Zhou, Shaohua & Wu, Jingyi & Lei, Gang & Li, Peng & Sun, Peijie, 2017. "Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage," Energy, Elsevier, vol. 123(C), pages 487-498.
    5. Francesco Calise, 2022. "Recent Advances in Green Hydrogen Technology," Energies, MDPI, vol. 15(16), pages 1-4, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongao Xie & Qihang Jin & Guanli Su & Wei Lu, 2024. "A Review of Hydrogen Storage and Transportation: Progresses and Challenges," Energies, MDPI, vol. 17(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.
    2. Li, Ke & Wen, Jian & Xin, Biping & Zhou, Aimin & Wang, Simin, 2024. "Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield," Energy, Elsevier, vol. 286(C).
    3. Zhang, Wujie & Xu, Liangze & Zhang, Jiaxu & Zheng, Zhaoqi & Miao, Ruijiao & Huang, Yonghua, 2025. "Multi-objective optimization of cryogenic propellant zero boil-off storage: Modeling, optimization method and performance enhancement," Energy, Elsevier, vol. 320(C).
    4. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Kang, Byeonghyun & Choi, Jejun & Lim, In Seop & Lim, Hyun Sung & Ahn, Minhyeok & Kim, Min Soo, 2025. "Integrated thermal modeling and parametric study of liquid hydrogen storage tanks: Effects of insulation design and operating conditions," Energy, Elsevier, vol. 319(C).
    6. Ai, Wei & Wang, Liang & Lin, Xipeng & Bai, Yakai & Huang, Jingjian & Hu, Jiexiang & Chen, Haisheng, 2024. "Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization," Energy, Elsevier, vol. 313(C).
    7. Jorgen Depken & Alexander Dyck & Lukas Roß & Sören Ehlers, 2022. "Safety Considerations of Hydrogen Application in Shipping in Comparison to LNG," Energies, MDPI, vol. 15(9), pages 1-20, April.
    8. Zhang, Xiangzhen & Xu, Miaofu & Chen, Zilin & Yang, Xiaochen & Yang, Xiangchen & Zhao, Tongxian & Ye, Rui & Bian, Xiaojuan & Gao, Yao & Han, Ruixiong & Sun, Liangrui & Lu, Huihua & Li, Yuhui & Ge, Rui, 2024. "Thermal performance research on the zero liquid helium consumption cryostat for a superconducting undulator," Energy, Elsevier, vol. 308(C).
    9. Sampene, Agyemang Kwasi & Li, Cai & Wiredu, John, 2024. "An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance," Energy Policy, Elsevier, vol. 187(C).
    10. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    11. Aleksandra Badora & Krzysztof Kud & Marian Woźniak, 2021. "Nuclear Energy Perception and Ecological Attitudes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    12. Zhao, Qian & Su, Chi-Wei & Qin, Meng & Umar, Muhammad, 2023. "Is global renewable energy development a curse or blessing for economic growth? Evidence from China," Energy, Elsevier, vol. 285(C).
    13. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    14. Dunbar, Kwamie & Treku, Daniel N., 2025. "Do energy transition investment flows aid climate commitments?," Energy Economics, Elsevier, vol. 142(C).
    15. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
    16. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    17. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    18. Gi-Dong Nam & Hae-Jin Sung & Dong-Woo Ha & Hyun-Woo No & Tea-Hyung Koo & Rock-Kil Ko & Minwon Park, 2023. "Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen," Energies, MDPI, vol. 16(1), pages 1-21, January.
    19. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    20. Andrew Osei Agyemang & Kong Yusheng & Angelina Kissiwaa Twum & Bless Kofi Edziah & Emmanuel Caesar Ayamba, 2024. "Environmental accounting and performance: empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3687-3712, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9267-:d:995842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.