Integrated thermal modeling and parametric study of liquid hydrogen storage tanks: Effects of insulation design and operating conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.134869
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
- Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
- Huang, Yonghua & Wang, Bin & Zhou, Shaohua & Wu, Jingyi & Lei, Gang & Li, Peng & Sun, Peijie, 2017. "Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage," Energy, Elsevier, vol. 123(C), pages 487-498.
- Kang, Dong-Hyun & An, Ji-Hong & Lee, Chul-Jin, 2024. "Numerical modeling and optimization of thermal insulation for liquid hydrogen storage tanks," Energy, Elsevier, vol. 291(C).
- Christopher Winnefeld & Thomas Kadyk & Boris Bensmann & Ulrike Krewer & Richard Hanke-Rauschenbach, 2018. "Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications," Energies, MDPI, vol. 11(1), pages 1-23, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Wujie & Xu, Liangze & Zhang, Jiaxu & Zheng, Zhaoqi & Miao, Ruijiao & Huang, Yonghua, 2025. "Multi-objective optimization of cryogenic propellant zero boil-off storage: Modeling, optimization method and performance enhancement," Energy, Elsevier, vol. 320(C).
- Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.
- Zhang, Xiangzhen & Xu, Miaofu & Chen, Zilin & Yang, Xiaochen & Yang, Xiangchen & Zhao, Tongxian & Ye, Rui & Bian, Xiaojuan & Gao, Yao & Han, Ruixiong & Sun, Liangrui & Lu, Huihua & Li, Yuhui & Ge, Rui, 2024. "Thermal performance research on the zero liquid helium consumption cryostat for a superconducting undulator," Energy, Elsevier, vol. 308(C).
- Li, Ke & Wen, Jian & Xin, Biping & Zhou, Aimin & Wang, Simin, 2024. "Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield," Energy, Elsevier, vol. 286(C).
- Kecen Li & Jie Chen & Xueqin Tian & Yujing He, 2022. "Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region," Energies, MDPI, vol. 15(24), pages 1-17, December.
- Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Ai, Wei & Wang, Liang & Lin, Xipeng & Bai, Yakai & Huang, Jingjian & Hu, Jiexiang & Chen, Haisheng, 2024. "Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization," Energy, Elsevier, vol. 313(C).
- Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
- Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
- Pavlos Rompokos & Sajal Kissoon & Ioannis Roumeliotis & Devaiah Nalianda & Theoklis Nikolaidis & Andrew Rolt, 2020. "Liquefied Natural Gas for Civil Aviation," Energies, MDPI, vol. 13(22), pages 1-20, November.
- Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
- Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
- Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
- Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
- Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
- Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
- Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
- Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.