IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4510-d601790.html
   My bibliography  Save this article

Municipal Solid Waste Thermal Analysis—Pyrolysis Kinetics and Decomposition Reactions

Author

Listed:
  • Ewa Syguła

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Kacper Świechowski

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Małgorzata Hejna

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Ines Kunaszyk

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Andrzej Białowiec

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

Abstract

In this study, 12 organic waste materials were subjected to TG/DTG thermogravimetric analysis and DSC calorimetric analysis. These analyses provided basic information about thermochemical transformations and degradation rates during organic waste pyrolysis. Organic waste materials were divided into six basic groups as follows: paper, cardboard, textiles, plastics, hygiene waste, and biodegradable waste. For each group, two waste materials were selected to be studied. Research materials were (i) paper (receipts, cotton wool); (ii) cardboard (cardboard, egg carton); (iii) textiles (cotton, leather); (iv) plastics (polyethylene (PET), polyurethane (PU)); (v) hygiene waste (diapers, leno); and (vi) biodegradable waste (chicken meat, potato peel). Waste materials were chosen to represent the most abundant waste that can be found in the municipal solid waste stream. Based on TG results, kinetic parameters according to the Coats–Redfern method were determined. The pyrolysis activation energy was the highest for cotton, 134.5 kJ × (mol∙K) −1 , and the lowest for leather, 25.2 kJ × (mol∙K) −1 . The DSC analysis showed that a number of transformations occurred during pyrolysis for each material. For each transformation, the normalized energy required for transformation, or released during transformation, was determined, and then summarized to present the energy balance. The study found that the energy balance was negative for only three waste materials—PET (−220.1 J × g −1 ), leather (−66.8 J × g −1 ), and chicken meat (−130.3 J × g −1 )—whereas the highest positive balance value was found for potato peelings (367.8 J × g −1 ). The obtained results may be applied for the modelling of energy and mass balance of municipal solid waste pyrolysis.

Suggested Citation

  • Ewa Syguła & Kacper Świechowski & Małgorzata Hejna & Ines Kunaszyk & Andrzej Białowiec, 2021. "Municipal Solid Waste Thermal Analysis—Pyrolysis Kinetics and Decomposition Reactions," Energies, MDPI, vol. 14(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4510-:d:601790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    2. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    3. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    4. T. Sajid & S. Tanveer & Z. Sabir & J. L. G. Guirao, 2020. "Impact of Activation Energy and Temperature-Dependent Heat Source/Sink on Maxwell–Sutterby Fluid," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, August.
    5. Ewa Syguła & Jacek A. Koziel & Andrzej Białowiec, 2019. "Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal," Energies, MDPI, vol. 12(16), pages 1-19, August.
    6. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    7. Varma, Anil Kumar & Lal, Navneeta & Rathore, Ashwani Kumar & Katiyar, Rajesh & Thakur, Lokendra Singh & Shankar, Ravi & Mondal, Prasenjit, 2021. "Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis," Energy, Elsevier, vol. 218(C).
    8. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kacper Świechowski & Małgorzata Leśniak & Andrzej Białowiec, 2021. "Medical Peat Waste Upcycling to Carbonized Solid Fuel in the Torrefaction Process," Energies, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kacper Świechowski & Małgorzata Leśniak & Andrzej Białowiec, 2021. "Medical Peat Waste Upcycling to Carbonized Solid Fuel in the Torrefaction Process," Energies, MDPI, vol. 14(19), pages 1-20, September.
    2. Chengzhe Shen & Yan Zhang & Gengsheng Liu & Dongxu Wang & Jinbao Zhang & Kai Yang & Xintong Wen & Quan Sun & Xuejun Dou & Yong Zhang & Jingwen Mao & Lei Deng, 2025. "Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal," Energies, MDPI, vol. 18(13), pages 1-17, June.
    3. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    4. Ferfari, Oussama & Belaadi, Ahmed & Bourchak, Mostefa & Ghernaout, Djamel & Ajaj, Rafic M. & Chai, Boon Xian, 2024. "Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method," Renewable Energy, Elsevier, vol. 231(C).
    5. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    6. Bryan Chiguano-Tapia & Elena Diaz & M. Angeles de la Rubia & Angel F. Mohedano, 2025. "Co-Hydrothermal Carbonization of Swine Manure and Soybean Hulls: Synergistic Effects on the Potential Use of Hydrochar as a Biofuel and Soil Improver," Sustainability, MDPI, vol. 17(11), pages 1-18, May.
    7. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Elucidating the bioenergy potential of raw, hydrothermally carbonized and torrefied waste Arundo donax biomass in terms of physicochemical characterization, kinetic and thermodynamic parameters," Renewable Energy, Elsevier, vol. 187(C), pages 844-856.
    8. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    9. Fan, Yongsheng & Qin, Changsheng & Zhao, Keyu & Xiong, Yonglian & Shi, Yunxi, 2025. "Conversion of lignin with polystyrene into high-value aromatics through co-pyrolysis and post-plasma refining," Energy, Elsevier, vol. 318(C).
    10. Lin, Sen & Li, Liangzhong & Wei, Zebin & Liang, Jiayu & Lin, Ziting & Evrendilek, Fatih & He, Yao & Ninomiya, Yoshihiko & Xie, Wuming & Sun, Shuiyu & Liu, Jingyong, 2025. "CO2-induced co-pyrolysis of Pennisetum hydridum and waste tires: Multi-objective optimization of its synergies and pyrolytic oil, char and gas outputs," Energy, Elsevier, vol. 317(C).
    11. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    12. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    13. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    14. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    15. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    16. Wei, Yi & Lu, Licong & Zhang, Xudong & Ji, Jianbing, 2022. "Hydrogen produced at low temperatures by electrochemically assisted pyrolysis of cellulose in molten carbonate," Energy, Elsevier, vol. 254(PC).
    17. Sahu, Parmanand & Gangil, Sandip & Bhargav, Vinod Kumar, 2023. "Biopolymeric transitions under pyrolytic thermal degradation of Pigeon pea stalk," Renewable Energy, Elsevier, vol. 206(C), pages 157-167.
    18. Chen, Xinyang & Cai, Di & Yang, Yumiao & Sun, Yuhang & Wang, Binhui & Yao, Zhitong & Jin, Meiqing & Liu, Jie & Reinmöller, Markus & Badshah, Syed Lal & Magdziarz, Aneta, 2023. "Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS," Renewable Energy, Elsevier, vol. 205(C), pages 490-498.
    19. Jin, Jiafeng & Sun, Jinsheng & Lv, Kaihe & Hou, Qilin & Guo, Xuan & Liu, Kesong & Deng, Yan & Song, Lide, 2023. "Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation," Energy, Elsevier, vol. 278(PA).
    20. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4510-:d:601790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.