IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012525.html
   My bibliography  Save this article

Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation

Author

Listed:
  • Jin, Jiafeng
  • Sun, Jinsheng
  • Lv, Kaihe
  • Hou, Qilin
  • Guo, Xuan
  • Liu, Kesong
  • Deng, Yan
  • Song, Lide

Abstract

This study synthesized a novel Cu@4 A zeolite nano-catalyst, which exhibited excellent catalytic pyrolysis performance on oil shale. The catalytic pyrolysis behaviors of oil shale were investigated, results show the initial pyrolysis temperature of organics decreased from 410 °C to 360 °C after catalytic treatment, and the activation energy declined from 190.73 to 147.95 kJ/mol. The oil and gas yields increased by 7.61% and 19.69% after catalysis treatment by Cu@4 A, respectively; the yields of H2 and ethylene catalyzed by Cu@4 A zeolite climbed to 15% and 21%. Cu@4 A shows a prominent selectivity on light alkanes and alkenes compared with metal catalysts. The configurations of hydrocarbons in nano-pore were investigated by Molecular Dynamics simulations, the first density peak of C3H6 declined by 68.3% after catalyzed by Cu@4 A at a temperature of 573 K. The interaction energy of hydrocarbon would decrease when the system temperature increases. Finally, the catalytic mechanism was elucidated, kerogen would decompose into macromolecule aromatic hydrocarbons via the β-cleavage of carbenium ions over the acidic sites of the prepared catalyst, then followed by the dehydrocyclization, oligomerization, and aromatization.

Suggested Citation

  • Jin, Jiafeng & Sun, Jinsheng & Lv, Kaihe & Hou, Qilin & Guo, Xuan & Liu, Kesong & Deng, Yan & Song, Lide, 2023. "Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012525
    DOI: 10.1016/j.energy.2023.127858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiafeng Jin & Jinsheng Sun & Kesheng Rong & Kaihe Lv & Tuan A. H. Nguyen & Ren Wang & Xianbin Huang & Yingrui Bai & Jingping Liu & Jintang Wang, 2020. "Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review," Energies, MDPI, vol. 13(18), pages 1-23, September.
    2. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    3. Yu, Jie & Liu, Sheng & Cardoso, Aderlanio & Han, Yang & Bikane, Kagiso & Sun, Lushi, 2019. "Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu," Energy, Elsevier, vol. 188(C).
    4. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    5. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2014. "Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS," Renewable Energy, Elsevier, vol. 65(C), pages 70-77.
    6. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Sahu, Pradeep & Vairakannu, Prabu, 2023. "CO2 based co-gasification of printed circuit board with high ash coal," Energy, Elsevier, vol. 263(PE).
    3. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    4. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "Selective production of furfural and phenols from rice husk: the influence of synergetic pretreatments with different order," Renewable Energy, Elsevier, vol. 168(C), pages 297-308.
    5. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    6. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    7. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Elucidating the bioenergy potential of raw, hydrothermally carbonized and torrefied waste Arundo donax biomass in terms of physicochemical characterization, kinetic and thermodynamic parameters," Renewable Energy, Elsevier, vol. 187(C), pages 844-856.
    8. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    9. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    10. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    11. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    12. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    13. Wei, Yi & Lu, Licong & Zhang, Xudong & Ji, Jianbing, 2022. "Hydrogen produced at low temperatures by electrochemically assisted pyrolysis of cellulose in molten carbonate," Energy, Elsevier, vol. 254(PC).
    14. Chen, Xinyang & Cai, Di & Yang, Yumiao & Sun, Yuhang & Wang, Binhui & Yao, Zhitong & Jin, Meiqing & Liu, Jie & Reinmöller, Markus & Badshah, Syed Lal & Magdziarz, Aneta, 2023. "Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS," Renewable Energy, Elsevier, vol. 205(C), pages 490-498.
    15. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    16. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    17. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    18. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    19. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    20. Norbert Miskolczi & Szabina Tomasek, 2022. "Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates," Energies, MDPI, vol. 15(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.