IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4299-d595638.html
   My bibliography  Save this article

The Impact of the Pandemic on Vehicle Traffic and Roadside Environmental Pollution: Rzeszow City as a Case Study

Author

Listed:
  • Miroslaw Smieszek

    (Faculty of Management, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Vasyl Mateichyk

    (Faculty of Management, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Magdalena Dobrzanska

    (Faculty of Management, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Pawel Dobrzanski

    (Faculty of Management, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Ganna Weigang

    (Ukraine Department of Cyber Security, Banking University 61, V. Chornovola Ave., 79020 Lviv, Ukraine)

Abstract

The development of the COVID-19 pandemic and the related lockdown had a major impact on vehicle traffic in cities. Based on available data from the selected city of Rzeszow, Poland, it was decided to assess changes in vehicle traffic and the impact of these changes on roadside environmental pollution. As part of the research, data from the first half of 2020 regarding vehicle traffic on selected streets of the city and on the city’s inlet routes were analyzed. For the selected road sections, changes in hourly traffic volume in 2020, compared with 2019, were also determined. With data on traffic volume, an attempt was made to estimate the impact of changes in traffic volume on air pollution in the city. Research on air pollution from motor vehicles was focused on a selected section of a city road that was equipped with an automatic air pollution measurement station located very close to the road. Additionally, at the road intersection and in the vicinity of the measuring station, a sensor was installed in the roadway to count passing vehicles. A preliminary analysis of air pollution data revealed that factors such as wind speed and direction and outside temperature had a large impact on measurement results. To eliminate the influence of these factors and to obtain data concerning only contamination originating from motor vehicles traveling along the road, an appropriate mathematical model of the traffic flow–roadside environment system was built. This model was designed to determine the air pollution in the vicinity of the road generated by traffic flow. The constructed model was verified, and the conditions for its use were determined in order to study the impact of traffic and roadside environment on the level of air pollution from harmful exhaust substances. It was shown that at certain times of the day, especially at low temperatures, other sources of harmful emissions related to home heating play a major role in air pollution in the city.

Suggested Citation

  • Miroslaw Smieszek & Vasyl Mateichyk & Magdalena Dobrzanska & Pawel Dobrzanski & Ganna Weigang, 2021. "The Impact of the Pandemic on Vehicle Traffic and Roadside Environmental Pollution: Rzeszow City as a Case Study," Energies, MDPI, vol. 14(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4299-:d:595638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Letizia Appolloni & Alberto Giretti & Maria Vittoria Corazza & Daniela D’Alessandro, 2020. "Walkable Urban Environments: An Ergonomic Approach of Evaluation," Sustainability, MDPI, vol. 12(20), pages 1-31, October.
    2. Miroslaw Smieszek & Magdalena Dobrzanska & Pawel Dobrzanski, 2019. "Rzeszow as a City Taking Steps Towards Developing Sustainable Public Transport," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    3. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    4. Chao Wang & Zhuoqun Sun & Zhirui Ye, 2020. "On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-14, February.
    5. Luyu Liu & Harvey J Miller & Jonathan Scheff, 2020. "The impacts of COVID-19 pandemic on public transit demand in the United States," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    6. Deepti Muley & Md. Shahin & Charitha Dias & Muhammad Abdullah, 2020. "Role of Transport during Outbreak of Infectious Diseases: Evidence from the Past," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    7. Muley, Deepti & Ghanim, Mohammad Shareef & Mohammad, Anas & Kharbeche, Mohamed, 2021. "Quantifying the impact of COVID–19 preventive measures on traffic in the State of Qatar," Transport Policy, Elsevier, vol. 103(C), pages 45-59.
    8. Corazza, Maria Vittoria & Musso, Antonio, 2021. "Urban transport policies in the time of pandemic, and after: An ARDUOUS research agenda," Transport Policy, Elsevier, vol. 103(C), pages 31-44.
    9. Vickerman, Roger, 2021. "Will Covid-19 put the public back in public transport? A UK perspective," Transport Policy, Elsevier, vol. 103(C), pages 95-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    3. Miroslaw Śmieszek & Nataliia Kostian & Vasyl Mateichyk & Jakub Mościszewski & Liudmyla Tarandushka, 2021. "Determination of the Model Basis for Assessing the Vehicle Energy Efficiency in Urban Traffic," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreten Simović & Tijana Ivanišević & Bojana Bradić & Svetlana Čičević & Aleksandar Trifunović, 2021. "What Causes Changes in Passenger Behavior in South-East Europe during the COVID-19 Pandemic?," Sustainability, MDPI, vol. 13(15), pages 1-11, July.
    2. Panayotis Christidis & Aris Christodoulou & Elena Navajas-Cawood & Biagio Ciuffo, 2021. "The Post-Pandemic Recovery of Transport Activity: Emerging Mobility Patterns and Repercussions on Future Evolution," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    3. Xin, Mengwei & Shalaby, Amer & Feng, Shumin & Zhao, Hu, 2021. "Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method," Transport Policy, Elsevier, vol. 111(C), pages 1-16.
    4. Witold Torbacki, 2021. "Achieving Sustainable Mobility in the Szczecin Metropolitan Area in the Post-COVID-19 Era: The DEMATEL and PROMETHEE II Approach," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    5. Md Rakibul Islam & Mohamed Abdel-Aty & Zubayer Islam & Shile Zhang, 2022. "Risk-Compensation Trends in Road Safety during COVID-19," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    6. Soria, Jason & Edward, Deirdre & Stathopoulos, Amanda, 2023. "Requiem for transit ridership? An examination of who abandoned, who will return, and who will ride more with mobility as a service," Transport Policy, Elsevier, vol. 134(C), pages 139-154.
    7. Molloy, Joseph & Schatzmann, Thomas & Schoeman, Beaumont & Tchervenkov, Christopher & Hintermann, Beat & Axhausen, Kay W., 2021. "Observed impacts of the Covid-19 first wave on travel behaviour in Switzerland based on a large GPS panel," Transport Policy, Elsevier, vol. 104(C), pages 43-51.
    8. Oluwayemi-Oniya Aderibigbe & Trynos Gumbo, 2022. "Variations in Mode Choice of Residents Prior and during COVID-19: An Empirical Evidence from Johannesburg, South Africa," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    9. Shiqi Zhang & Tianwei Sun & Yuan Lu, 2023. "The COVID-19 Pandemic and Tourists’ Risk Perceptions: Tourism Policies’ Mediating Role in Sustainable and Resilient Recovery in the New Normal," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    10. Shuai Yu & Bin Li & Dongmei Liu, 2023. "Exploring the Public Health of Travel Behaviors in High-Speed Railway Environment during the COVID-19 Pandemic from the Perspective of Trip Chain: A Case Study of Beijing–Tianjin–Hebei Urban Agglomera," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
    11. Mubarak Alrumaidhi & Hesham A. Rakha, 2024. "An Econometric Analysis to Explore the Temporal Variability of the Factors Affecting Crash Severity Due to COVID-19," Sustainability, MDPI, vol. 16(3), pages 1-26, February.
    12. Liu, Luyu & Kar, Armita & Tokey, Ahmad Ilderim & Le, Huyen T.K. & Miller, Harvey J., 2023. "Disparities in public transit accessibility and usage by people with mobility disabilities: An evaluation using high-resolution transit data," Journal of Transport Geography, Elsevier, vol. 109(C).
    13. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    14. Currie, Graham & Jain, Taru & Aston, Laura, 2021. "Evidence of a post-COVID change in travel behaviour – Self-reported expectations of commuting in Melbourne," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 218-234.
    15. Xingpei Yan & Zheng Zhu, 2021. "Quantifying the impact of COVID-19 on e-bike safety in China via multi-output and clustering-based regression models," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    16. Varameth Vichiensan & Kazuki Nakamura, 2021. "Walkability Perception in Asian Cities: A Comparative Study in Bangkok and Nagoya," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    17. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    18. Pezoa, Raúl & Basso, Franco & Quilodrán, Paulina & Varas, Mauricio, 2023. "Estimation of trip purposes in public transport during the COVID-19 pandemic: The case of Santiago, Chile," Journal of Transport Geography, Elsevier, vol. 109(C).
    19. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    20. Dimitrios Paraskevadakis & Adeyeri Ifeoluwa, 2022. "An industry-level analysis of the post-Brexit and post-Covid 19 Ro-Ro ferry market and critical maritime freight transport links between the UK and the EU," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4299-:d:595638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.