IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4275-d594772.html
   My bibliography  Save this article

Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland

Author

Listed:
  • Jarosław Szlugaj

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Kraków, Poland)

  • Krzysztof Galos

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Kraków, Poland)

Abstract

Since the beginning of the 1990s, due to international regulations on air quality, a large number of flue gas desulphurisation (FGD) installations have been constructed in the Polish coal-fired power industry. Thanks to that, SO 2 capture in this industry increased to ca. 90%. Since wet lime or fluidized bed boilers were mostly used for FGD purposes, a significant increase in the domestic demand for lime sorbents has been reported. Between 1994 and 2019, it has increased from virtually zero before 1994 to about 3.3–3.4 million tpy (tonnes per year) today. On the basis of official governmental data and completed surveys of the Polish power companies, the paper analyses the process of the implementation of FGD in Poland along with limestone sorbents consumption and FGD gypsum production in the Polish coal-fired power plants. It also presents the current and potential limestone resource base for production of limestone sorbents applied in FGD. Electric energy mix in Poland is expected to be changed radically in the coming 30 years. Share of coal-based electricity is still very high—ca. 80%—and it will remain dominant for at least next decade. With the next coming FGD installations, further moderate increase of limestone sorbents consumption is expected, up to 3.7 million tpy in 2030. After 2030, a significant, quick decrease of share of coal-fired electricity is expected in Poland, down to max. 30% just before 2050. This will result in a gradual decrease in limestone sorbent demand, to max. 1.3 million tpy before 2050 and virtually zero after 2050, which will be followed by collapse of FGD gypsum production.

Suggested Citation

  • Jarosław Szlugaj & Krzysztof Galos, 2021. "Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland," Energies, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4275-:d:594772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graus, W.H.J. & Worrell, E., 2007. "Effects of SO2 and NOx control on energy-efficiency power generation," Energy Policy, Elsevier, vol. 35(7), pages 3898-3908, July.
    2. Kılıç, Osman & Acarkan, Bora & Ay, Selim, 2013. "FGD investments as part of energy policy: A case study for Turkey," Energy Policy, Elsevier, vol. 62(C), pages 1461-1469.
    3. Bagayev, Igor & Lochard, Julie, 2017. "EU air pollution regulation: A breath of fresh air for Eastern European polluting industries?," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 145-163.
    4. Galos, K. A. & Smakowski, T. S. & Szlugaj, J., 2003. "Flue-gas desulphurisation products from Polish coal-fired power-plants," Applied Energy, Elsevier, vol. 75(3-4), pages 257-265, July.
    5. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    6. Tagliapietra, Simone & Zachmann, Georg & Edenhofer, Ottmar & Glachant, Jean-Michel & Linares, Pedro & Loeschel, Andreas, 2019. "The European union energy transition: Key priorities for the next five years," Energy Policy, Elsevier, vol. 132(C), pages 950-954.
    7. Lidia Gawlik, 2018. "The Polish power industry in energy transformation process," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(1), pages 229-237, May.
    8. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Optimization of global and local pollution control in electricity production from coal burning," Applied Energy, Elsevier, vol. 92(C), pages 369-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    2. Jarosław Kaczmarek & Konrad Kolegowicz & Wojciech Szymla, 2022. "Restructuring of the Coal Mining Industry and the Challenges of Energy Transition in Poland (1990–2020)," Energies, MDPI, vol. 15(10), pages 1-48, May.
    3. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    4. Li, Ke & Yuan, Weihong & Li, Jianglong & Ai, Hongshan, 2021. "Effects of time-dependent environmental regulations on air pollution: Evidence from the Changsha-Zhuzhou-Xiangtan region, China," World Development, Elsevier, vol. 138(C).
    5. Lei Ding & Xuejuan Fang, 2022. "Spatial–temporal distribution of air-pollution-intensive industries and its social-economic driving mechanism in Zhejiang Province, China: a framework of spatial econometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1681-1712, February.
    6. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    7. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    8. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    9. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    10. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    11. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    12. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    13. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    14. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    15. Huang, Geng & He, Ling-Yun & Lin, Xi, 2023. "Deterioration or improvement? Intermediate product import and enterprises' environmental performance," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 139-150.
    16. Jan Wrana & Wojciech Struzik & Bartłomiej Kwiatkowski & Piotr Gleń, 2022. "Release of Energy from Groundwater/with Reduction in CO 2 Emissions of More Than 50% from HVAC in the Extension and Revitalization of the Former Palace of the Sobieski Family in Lublin," Energies, MDPI, vol. 15(18), pages 1-11, September.
    17. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    18. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    19. Sokołowski, Jakub & Bouzarovski, Stefan, 2022. "Decarbonisation of the Polish residential sector between the 1990s and 2021: A case study of policy failures," Energy Policy, Elsevier, vol. 163(C).
    20. Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4275-:d:594772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.