IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2148-d352739.html
   My bibliography  Save this article

Energy Disaggregation Using Two-Stage Fusion of Binary Device Detectors

Author

Listed:
  • Pascal A. Schirmer

    (Communications and Intelligent Systems Group, School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK)

  • Iosif Mporas

    (Communications and Intelligent Systems Group, School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK)

  • Akbar Sheikh-Akbari

    (School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS1 3HE, UK)

Abstract

A data-driven methodology to improve the energy disaggregation accuracy during Non-Intrusive Load Monitoring is proposed. In detail, the method uses a two-stage classification scheme, with the first stage consisting of classification models processing the aggregated signal in parallel and each of them producing a binary device detection score, and the second stage consisting of fusion regression models for estimating the power consumption for each of the electrical appliances. The accuracy of the proposed approach was tested on three datasets—ECO (Electricity Consumption & Occupancy), REDD (Reference Energy Disaggregation Data Set), and iAWE (Indian Dataset for Ambient Water and Energy)—which are available online, using four different classifiers. The presented approach improves the estimation accuracy by up to 4.1% with respect to a basic energy disaggregation architecture, while the improvement on device level was up to 10.1%. Analysis on device level showed significant improvement of power consumption estimation accuracy especially for continuous and nonlinear appliances across all evaluated datasets.

Suggested Citation

  • Pascal A. Schirmer & Iosif Mporas & Akbar Sheikh-Akbari, 2020. "Energy Disaggregation Using Two-Stage Fusion of Binary Device Detectors," Energies, MDPI, vol. 13(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2148-:d:352739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    2. Cominola, A. & Giuliani, M. & Piga, D. & Castelletti, A. & Rizzoli, A.E., 2017. "A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring," Applied Energy, Elsevier, vol. 185(P1), pages 331-344.
    3. İsmail Hakkı ÇAVDAR & Vahid FARYAD, 2019. "New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid," Energies, MDPI, vol. 12(7), pages 1-18, March.
    4. Buchanan, Kathryn & Banks, Nick & Preston, Ian & Russo, Riccardo, 2016. "The British public’s perception of the UK smart metering initiative: Threats and opportunities," Energy Policy, Elsevier, vol. 91(C), pages 87-97.
    5. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Zilin Wang & Yanru Chen & Min Guo & Zhengyu Chen & Yi Niu & Huangeng Liu & Liangyin Chen, 2021. "Bats: An Appliance Safety Hazards Factors Detection Algorithm with an Improved Nonintrusive Load Disaggregation Method," Energies, MDPI, vol. 14(12), pages 1-18, June.
    2. Pascal A. Schirmer & Iosif Mporas & Akbar Sheikh-Akbari, 2021. "Identification of TV Channel Watching from Smart Meter Data Using Energy Disaggregation," Energies, MDPI, vol. 14(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    2. Mahfoud Drouaz & Bruno Colicchio & Ali Moukadem & Alain Dieterlen & Djafar Ould-Abdeslam, 2021. "New Time-Frequency Transient Features for Nonintrusive Load Monitoring," Energies, MDPI, vol. 14(5), pages 1-11, March.
    3. Păunescu Carmen & Blid Laura, 2016. "Effective energy planning for improving the enterprise’s energy performance," Management & Marketing, Sciendo, vol. 11(3), pages 512-531, September.
    4. Chankook Park & Wan Gyu Heo & Myung Eun Lee, 2024. "Study on Consumers’ Perceived Benefits and Risks of Smart Energy System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 288-300, May.
    5. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    6. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    7. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    8. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    9. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    10. Milchram, Christine & Hillerbrand, Rafaela & van de Kaa, Geerten & Doorn, Neelke & Künneke, Rolf, 2018. "Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom," Applied Energy, Elsevier, vol. 229(C), pages 1244-1259.
    11. Tahir Emre Kalaycı & Bor Bricelj & Marko Lah & Franz Pichler & Matthias K. Scharrer & Jelena Rubeša-Zrim, 2021. "A Knowledge Graph-Based Data Integration Framework Applied to Battery Data Management," Sustainability, MDPI, vol. 13(3), pages 1-17, February.
    12. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    13. Yilmaz, Selin & Cuony, Peter & Chanez, Cédric & Patel, Martin Kumar, 2024. "Communication strategies and consumer acceptance of utility-controlled heat pumps and electric vehicles," Utilities Policy, Elsevier, vol. 90(C).
    14. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    15. Ce Peng & Guoying Lin & Shaopeng Zhai & Yi Ding & Guangyu He, 2020. "Non-Intrusive Load Monitoring via Deep Learning Based User Model and Appliance Group Model," Energies, MDPI, vol. 13(21), pages 1-19, October.
    16. Jiateng Song & Hongbin Wang & Mingxing Du & Lei Peng & Shuai Zhang & Guizhi Xu, 2021. "Non-Intrusive Load Identification Method Based on Improved Long Short Term Memory Network," Energies, MDPI, vol. 14(3), pages 1-15, January.
    17. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    18. Soyeong Park & Seungwook Yoon & Byungtak Lee & Seokkap Ko & Euiseok Hwang, 2020. "Probabilistic Forecasting Based Joint Detection and Imputation of Clustered Bad Data in Residential Electricity Loads," Energies, MDPI, vol. 14(1), pages 1-13, December.
    19. Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).
    20. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2148-:d:352739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.