IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1773-d342432.html
   My bibliography  Save this article

The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses

Author

Listed:
  • Janne Hirvonen

    (Department of Mechanical Engineering, Aalto University, 00076 Espoo, Finland)

  • Juha Jokisalo

    (Department of Mechanical Engineering, Aalto University, 00076 Espoo, Finland)

  • Risto Kosonen

    (Department of Mechanical Engineering, Aalto University, 00076 Espoo, Finland
    College of Urban Construction, Nanjing Tech University, Nanjing 211816, China)

Abstract

This study examines how the energy renovation of old detached houses affects the hourly power consumption of heating and electricity in Finland. As electrification of heating through heat pumps becomes more common, the effects on the grid need to be quantified. Increased fluctuation and peak power demand could increase the need for fossil-based peaking power plants or call for new investments to the distribution infrastructure. The novelty in this study is the focus on hourly power demand instead of just annual energy consumption. Identifying the influence of building energy retrofits on the instantaneous power demand can help guide policy and investments into building retrofits and related technology. The work was done through dynamic building simulation and utilized building configurations obtained through multi-objective optimization. Deep energy retrofits decreased both the total and peak heating power consumption. However, the use of air-source heat pumps increased the peak power demand of electricity in district heated and wood heated buildings by as much as 100%. On the other hand, peak power demand in buildings with direct electric heating was reduced by 30 to 40%. On the building stock level, the demand reduction in buildings with direct electric heating could compensate for the increase in the share of buildings with ground-source heat pumps, so that the national peak electricity demand would not increase. This prevents the increase of demand for high emission peaking power plants as heat pump penetration rises. However, a use is needed for the excess solar electricity generated by the optimally retrofitted buildings, because much of the solar electricity cannot be utilized in the single-family houses during summer.

Suggested Citation

  • Janne Hirvonen & Juha Jokisalo & Risto Kosonen, 2020. "The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses," Energies, MDPI, vol. 13(7), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1773-:d:342432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janne Hirvonen & Juha Jokisalo & Juhani Heljo & Risto Kosonen, 2019. "Towards the EU Emission Targets of 2050: Cost-Effective Emission Reduction in Finnish Detached Houses," Energies, MDPI, vol. 12(22), pages 1-29, November.
    2. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2016. "Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions," Applied Energy, Elsevier, vol. 167(C), pages 255-269.
    3. Xu, Lei & Wang, Shengwei & Xiao, Fu, 2019. "An adaptive optimal monthly peak building demand limiting strategy considering load uncertainty," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    5. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
    7. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    8. Veronika Grimm & Gregor Zoettl, 2013. "Investment Incentives and Electricity Spot Market Competition," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 22(4), pages 832-851, December.
    9. Hirvonen, Janne & Sirén, Kai, 2018. "A novel fully electrified solar heating system with a high renewable fraction - Optimal designs for a high latitude community," Renewable Energy, Elsevier, vol. 127(C), pages 298-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Leal Filho & Mariia Fedoruk & Lyudmyla Zahvoyska & Lucas Veiga Avila, 2021. "Identifying and Comparing Obstacles and Incentives for the Implementation of Energy Saving Projects in Eastern and Western European Countries: An Exploratory Study," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    2. Silvia Erba & Alessandra Barbieri, 2022. "Measured Indoor Environmental Data in a Retrofitted Multiapartment Building to Assess Energy Flexibility and Thermal Safety during Winter Power Outages," Data, MDPI, vol. 7(7), pages 1-14, July.
    3. Giuseppe Emmi & Sara Bordignon & Laura Carnieletto & Michele De Carli & Fabio Poletto & Andrea Tarabotti & Davide Poletto & Antonio Galgaro & Giulia Mezzasalma & Adriana Bernardi, 2020. "A Novel Ground-Source Heat Pump with R744 and R1234ze as Refrigerants," Energies, MDPI, vol. 13(21), pages 1-18, October.
    4. Davor Končalović & Jelena Nikolic & Vladimir Vukasinovic & Dušan Gordić & Dubravka Živković, 2022. "Possibilities for Deep Renovation in Multi-Apartment Buildings in Different Economic Conditions in Europe," Energies, MDPI, vol. 15(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    2. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
    3. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    4. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    5. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    6. Ambrosius, Mirjam & Egerer, Jonas & Grimm, Veronika & van der Weijde, Adriaan H., 2022. "Risk aversion in multilevel electricity market models with different congestion pricing regimes," Energy Economics, Elsevier, vol. 105(C).
    7. Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2022. "Emissions reduction in a second-best world: On the long-term effects of overlapping regulations," Energy Economics, Elsevier, vol. 109(C).
    8. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    9. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    10. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    11. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    14. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    16. Felten, Björn & Osinski, Paul & Felling, Tim & Weber, Christoph, 2021. "The flow-based market coupling domain - Why we can't get it right," Utilities Policy, Elsevier, vol. 70(C).
    17. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    18. Peep Pihelo & Kalle Kuusk & Targo Kalamees, 2020. "Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings," Energies, MDPI, vol. 13(7), pages 1-20, April.
    19. Quan-Hoang Vuong & Quang-Loc Nguyen & Ruining Jin & Minh-Hieu Thi Nguyen & Thi-Phuong Nguyen & Viet-Phuong La & Minh-Hoang Nguyen, 2023. "Increasing Supply for Woody-Biomass-Based Energy through Wasted Resources: Insights from US Private Landowners," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    20. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1773-:d:342432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.