IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1767-d342258.html
   My bibliography  Save this article

Flow Shop Providing Frequency Regulation Service in Electricity Market

Author

Listed:
  • Yan Wang

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China)

  • Congxianzi Pei

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China)

  • Qiushuo Li

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China)

  • Jingbang Li

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Deng Pan

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Ciwei Gao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Electricity cost is one of main production costs for flow shops. Providing frequency regulation services can help electric loads reduce their electricity costs. Previous studies mostly focus on automatic generation control (AGC) strategies for other types of electric loads, such as air conditioners, EVs or battery storage. In this paper, we find flow shops competent to follow regulation signals and avoid interrupts of processing with the help of scheduling optimization. This finding may be an aid for flow shops by availing regulation services to the market and making a profit. Hence, we propose an AGC strategy for optimizing flow shop scheduling, without affecting the operation. To formulate the bidding strategy for flow shops in regulation market, we considered as many relevant factors as possible, including the regulation performance and yield of flow shops, constraints on load power, regulation reserve capacity and machines operation, inventory of each semi-finished product, AGC strategy—as well as the coupling between the bids in both energy market and regulation market. Our case study shows the potential of the methodology proposed in this paper to cut down the electric cost of flow shops and supplies of performance-qualified frequency regulation service.

Suggested Citation

  • Yan Wang & Congxianzi Pei & Qiushuo Li & Jingbang Li & Deng Pan & Ciwei Gao, 2020. "Flow Shop Providing Frequency Regulation Service in Electricity Market," Energies, MDPI, vol. 13(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1767-:d:342258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Boqiang & Xu, Lin, 2015. "Energy conservation of electrolytic aluminum industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 676-686.
    2. Costel Emil Cotet & Gicu Calin Deac & Crina Narcisa Deac & Cicerone Laurentiu Popa, 2020. "An Innovative Industry 4.0 Cloud Data Transfer Method for an Automated Waste Collection System," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    3. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
    4. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    5. Grein, Arne & Pehnt, Martin, 2011. "Load management for refrigeration systems: Potentials and barriers," Energy Policy, Elsevier, vol. 39(9), pages 5598-5608, September.
    6. Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Escrivá-Escrivá, Guillermo & Domijan, Alexander, 2012. "Evaluation and assessment of demand response potential applied to the meat industry," Applied Energy, Elsevier, vol. 92(C), pages 84-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    2. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    3. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    4. Yue, Qiang & Wang, Heming & Gao, Chengkang & Du, Tao & Liu, Liying & Lu, Zhongwu, 2015. "Resources saving and emissions reduction of the aluminum industry in China," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 68-75.
    5. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    6. Kanchiralla, Fayas Malik & Jalo, Noor & Thollander, Patrik & Andersson, Maria & Johnsson, Simon, 2021. "Energy use categorization with performance indicators for the food industry and a conceptual energy planning framework," Applied Energy, Elsevier, vol. 304(C).
    7. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    8. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    9. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    10. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    11. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    12. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    13. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    14. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
    15. Veera Babu Ramakurthi & Vijaya Kumar Manupati & Leonilde Varela & Goran Putnik, 2023. "Leveraging Blockchain to Support Collaborative Distributed Manufacturing Scheduling," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    16. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    18. Haisheng Tan & Peipei You & Sitao Li & Chengren Li & Chao Zhang & Hailang Zhou & Huicai Wang & Wenzhe Zhang & Huiru Zhao, 2024. "Towards a Sustainable Power System: A Three-Stage Demand Response Potential Evaluation Model," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    19. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    20. Choy, K.L. & Ho, G.T.S. & Lee, C.K.H. & Lam, H.Y. & Cheng, Stephen W.Y. & Siu, Paul K.Y. & Pang, G.K.H. & Tang, Valerie & Lee, Jason C.H. & Tsang, Y.P., 2016. "A recursive operations strategy model for managing sustainable chemical product development and production," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 262-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1767-:d:342258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.