IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6721-d465302.html
   My bibliography  Save this article

Reducing Rotor Temperature Rise in Concentrated Winding Motor by Using Magnetic Powder Mixed Resin Ring

Author

Listed:
  • Mitsuhide Sato

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

  • Keigo Takazawa

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

  • Manabu Horiuchi

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

  • Ryoken Masuda

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

  • Ryo Yoshida

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

  • Masami Nirei

    (National Institute of Technology, Nagano College, Nagano 381-8550, Japan)

  • Yinggang Bu

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

  • Tsutomu Mizuno

    (Faculty of Engineering, Shinshu University, Matsumoto 380-8553, Japan)

Abstract

The demand for high-speed servomotors is increasing, and minimal losses in both high-speed and high-torque regions are required. Copper loss reduction in permanent magnet motors can be achieved by configuring concentrated winding, but there are more spatial harmonics compared with distributed winding. At high-speed rotation, the eddy current loss of the rotor increases, and efficiency tends to decrease. Therefore, we propose a motor in which a composite ring made from resin material mixed with magnetic powder is mounted on the stator to suppress spatial harmonics. This paper describes three characteristic motor types, namely, open-slot motors, composite-ring motors, and closed-slot motors. Spatial harmonics are reduced significantly in composite-ring motors, and rotor eddy current loss is reduced by more than 50% compared with open-slot motors. Thermal analysis suggests that the saturation temperature rise value is reduced by more than 30 K. The use of a composite ring is effective in reducing magnet eddy current loss during high-speed rotation. Conversely, the torque characteristics in the closed-slot motor are greatly reduced as well as the efficiency. Magnetic circuits and simulations show that on electrical steel sheets with high relative permeability, the ring significantly reduces the torque flux passing through the stator, thus reducing the torque constant. To achieve reduced eddy current loss during high-speed rotation while ensuring torque characteristics with the composite ring, it is necessary to set the relative permeability and thickness of the composite ring according to motor specifications.

Suggested Citation

  • Mitsuhide Sato & Keigo Takazawa & Manabu Horiuchi & Ryoken Masuda & Ryo Yoshida & Masami Nirei & Yinggang Bu & Tsutomu Mizuno, 2020. "Reducing Rotor Temperature Rise in Concentrated Winding Motor by Using Magnetic Powder Mixed Resin Ring," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6721-:d:465302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji-Chang Son & Young-Rok Kang & Dong-Kuk Lim, 2020. "Optimal Design of IPMSM for FCEV Using Novel Immune Algorithm Combined with Steepest Descent Method," Energies, MDPI, vol. 13(13), pages 1-15, July.
    2. Lucia Frosini & Marco Pastura, 2020. "Analysis and Design of Innovative Magnetic Wedges for High Efficiency Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 13(1), pages 1-21, January.
    3. Jae-Woo Jung & Byeong-Hwa Lee & Kyu-Seob Kim & Sung-Il Kim, 2020. "Interior Permanent Magnet Synchronous Motor Design for Eddy Current Loss Reduction in Permanent Magnets to Prevent Irreversible Demagnetization," Energies, MDPI, vol. 13(19), pages 1-15, September.
    4. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    5. Shumei Cui & Tianxu Zhao & Bochao Du & Yuan Cheng, 2020. "Multiphase PMSM with Asymmetric Windings for Electric Drive," Energies, MDPI, vol. 13(15), pages 1-16, July.
    6. Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.
    7. Nai-Wen Liu & Kuo-Yuan Hung & Shih-Chin Yang & Feng-Chi Lee & Chia-Jung Liu, 2020. "Design of High-Speed Permanent Magnet Motor Considering Rotor Radial Force and Motor Losses," Energies, MDPI, vol. 13(22), pages 1-16, November.
    8. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Yoshida & Jun Kitajima & Takashi Sakae & Mitsuhide Sato & Tsutomu Mizuno & Yuki Shimoda & Akihiro Kubota & Shogo Wada & Teruo Kichiji & Hideo Kumagai, 2022. "Effect of Magnetic Properties of Magnetic Composite Tapes on Motor Losses," Energies, MDPI, vol. 15(21), pages 1-16, October.
    2. Anouar Belahcen & Armando Pires & Vitor Fernão Pires, 2023. "Magnetic Material Modelling of Electrical Machines," Energies, MDPI, vol. 16(2), pages 1-3, January.
    3. Gobbi, Massimiliano & Sattar, Aqeab & Palazzetti, Roberto & Mastinu, Gianpiero, 2024. "Traction motors for electric vehicles: Maximization of mechanical efficiency – A review," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plamena Dinolova & Vyara Ruseva & Ognyan Dinolov, 2023. "Energy Efficiency of Induction Motor Drives: State of the Art, Analysis and Recommendations," Energies, MDPI, vol. 16(20), pages 1-26, October.
    2. Jonathan Muñoz Tabora & Bendict Katukula Tshoombe & Wellington da Silva Fonseca & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Ubiratan Holanda Bezerra & Marcelo de Oliveira e Silva, 2022. "Virtual Modeling and Experimental Validation of the Line-Start Permanent Magnet Motor in the Presence of Harmonics," Energies, MDPI, vol. 15(22), pages 1-17, November.
    3. Zeyu Cheng & Zhi Cao & John T. Hwang & Chris Mi, 2023. "A Novel Single-Turn Permanent Magnet Synchronous Machine for Electric Aircraft," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Ji-Chang Son & Myung-Ki Baek & Sang-Hun Park & Dong-Kuk Lim, 2021. "Improved Immune Algorithm Combined with Steepest Descent Method for Optimal Design of IPMSM for FCEV Traction Motor," Energies, MDPI, vol. 14(13), pages 1-12, June.
    5. Aswin Balasubramanian & Floran Martin & Md Masum Billah & Osaruyi Osemwinyen & Anouar Belahcen, 2021. "Application of Surrogate Optimization Routine with Clustering Technique for Optimal Design of an Induction Motor," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Ting Yang & Takahiro Kawaguchi & Seiji Hashimoto & Wei Jiang, 2020. "Switching Sequence Model Predictive Direct Torque Control of IPMSMs for EVs in Switch Open-Circuit Fault-Tolerant Mode," Energies, MDPI, vol. 13(21), pages 1-15, October.
    7. Zhimeng Rao & Wenjuan Zhang & Gongping Wu & Jian Zheng & Shoudao Huang, 2020. "Characteristic Analysis and Predictive Torque Control of the Modular Three-Phase PMSM for Low-Voltage High Power Application," Energies, MDPI, vol. 13(21), pages 1-20, October.
    8. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    9. Soo-Hwan Park & Eui-Chun Lee & Gi-Ju Lee & Soon-O. Kwon & Myung-Seop Lim, 2021. "Effect of Pole and Slot Combination on the AC Joule Loss of Outer-Rotor Permanent Magnet Synchronous Motors Using a High Fill Factor Machined Coil," Energies, MDPI, vol. 14(11), pages 1-11, May.
    10. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.
    11. Shilei Zhou & Paul Walker & Yang Tian & Cong Thanh Nguyen & Nong Zhang, 2021. "Comparison on Energy Economy and Vibration Characteristics of Electric and Hydraulic in-Wheel Drive Vehicles," Energies, MDPI, vol. 14(8), pages 1-15, April.
    12. Anibal T. de Almeida & Fernando J. T. E. Ferreira & João Fong, 2023. "Perspectives on Electric Motor Market Transformation for a Net Zero Carbon Economy," Energies, MDPI, vol. 16(3), pages 1-16, January.
    13. João Pedro F. Trovão & Minh Cao Ta, 2022. "Electric Vehicle Efficient Power and Propulsion Systems," Energies, MDPI, vol. 15(11), pages 1-4, May.
    14. Piotr Szewczyk & Andrzej Łebkowski, 2021. "Studies on Energy Consumption of Electric Light Commercial Vehicle Powered by In-Wheel Drive Modules," Energies, MDPI, vol. 14(22), pages 1-28, November.
    15. Wuqiang Wang & Yong Li & Dajun Huan & Xiaodong Chen & Hongquan Liu & Yanrui Li & Lisha Li, 2022. "Research on Stress Design and Manufacture of the Fiber-Reinforced Composite Sleeve for the Rotor of High-Speed Permanent Magnet Motor," Energies, MDPI, vol. 15(7), pages 1-22, March.
    16. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Tian-Hua Liu, 2021. "Design and Control of Electrical Motor Drives," Energies, MDPI, vol. 14(22), pages 1-3, November.
    18. Gobbi, Massimiliano & Sattar, Aqeab & Palazzetti, Roberto & Mastinu, Gianpiero, 2024. "Traction motors for electric vehicles: Maximization of mechanical efficiency – A review," Applied Energy, Elsevier, vol. 357(C).
    19. Dongming Li & Guihong Feng & Wei Li & Bingyi Zhang & Jiaxu Zhang, 2022. "Effect of Stator Slots on Electromagnetic Performance of a High-Voltage Line-Start Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-18, May.
    20. Pedram Asef & Ramon Bargallo & Andrew Lapthorn & Davide Tavernini & Lingyun Shao & Aldo Sorniotti, 2021. "Assessment of the Energy Consumption and Drivability Performance of an IPMSM-Driven Electric Vehicle Using Different Buried Magnet Arrangements," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6721-:d:465302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.