IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3333-d378226.html
   My bibliography  Save this article

Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes

Author

Listed:
  • Jonathan Muñoz Tabora

    (Institute of Technology, Electrical Engineering Faculty, Federal University of Pará, Belém 66075-110, PA, Brazil)

  • Maria Emília de Lima Tostes

    (Institute of Technology, Electrical Engineering Faculty, Federal University of Pará, Belém 66075-110, PA, Brazil)

  • Edson Ortiz de Matos

    (Institute of Technology, Electrical Engineering Faculty, Federal University of Pará, Belém 66075-110, PA, Brazil)

  • Thiago Mota Soares

    (Institute of Technology, Electrical Engineering Faculty, Federal University of Pará, Belém 66075-110, PA, Brazil)

  • Ubiratan Holanda Bezerra

    (Institute of Technology, Electrical Engineering Faculty, Federal University of Pará, Belém 66075-110, PA, Brazil)

Abstract

Global energy systems are undergoing a transition process towards renewable energy and energy efficiency practices. Induction motors play an important role in this energy transformation process since they are widely used as industrial loads, representing more than 53% of global energy consumption. With more countries adopting minimum energy performance standards through more efficient induction motors, comparisons between these new technologies in the presence of electrical disturbances must be systematically evaluated before adopting a substitution policy in the industry. To this end, this work presents a comparative analysis of the impact of harmonic voltages on the performance and temperature rise of electric motors classes IE2, IE3 and IE4 in the same operational conditions in view of future substitutions. The results show that under ideal operating conditions the IE4 class permanent magnet motor has better performance in terms of consumption and temperature, however presenting non-linear characteristics. In the presence of voltage harmonics, this scenario changes completely according to the harmonic content. Finally, aiming to analyze the harmonics influence in the motor temperature rise a statistical analysis by means of Spearman correlation matrices is presented.

Suggested Citation

  • Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3333-:d:378226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunwoo Kim & Yeji Park & Huai-Cong Liu & Pil-Wan Han & Ju Lee, 2020. "Study on Line-Start Permanent Magnet Assistance Synchronous Reluctance Motor for Improving Efficiency and Power Factor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    2. Hyunwoo Kim & Yeji Park & Seung-Taek Oh & Hyungkwan Jang & Sung-Hong Won & Yon-Do Chun & Ju Lee, 2020. "A Study on the Rotor Design of Line Start Synchronous Reluctance Motor for IE4 Efficiency and Improving Power Factor," Energies, MDPI, vol. 13(21), pages 1-15, November.
    3. Hassanpour Isfahani, Arash & Vaez-Zadeh, Sadegh, 2009. "Line start permanent magnet synchronous motors: Challenges and opportunities," Energy, Elsevier, vol. 34(11), pages 1755-1763.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plamena Dinolova & Vyara Ruseva & Ognyan Dinolov, 2023. "Energy Efficiency of Induction Motor Drives: State of the Art, Analysis and Recommendations," Energies, MDPI, vol. 16(20), pages 1-26, October.
    2. Mitsuhide Sato & Keigo Takazawa & Manabu Horiuchi & Ryoken Masuda & Ryo Yoshida & Masami Nirei & Yinggang Bu & Tsutomu Mizuno, 2020. "Reducing Rotor Temperature Rise in Concentrated Winding Motor by Using Magnetic Powder Mixed Resin Ring," Energies, MDPI, vol. 13(24), pages 1-15, December.
    3. Jonathan Muñoz Tabora & Bendict Katukula Tshoombe & Wellington da Silva Fonseca & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Ubiratan Holanda Bezerra & Marcelo de Oliveira e Silva, 2022. "Virtual Modeling and Experimental Validation of the Line-Start Permanent Magnet Motor in the Presence of Harmonics," Energies, MDPI, vol. 15(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Prakht & Mohamed N. Ibrahim & Vadim Kazakbaev, 2023. "Energy Efficiency Improvement of Electric Machines without Rare-Earth Magnets," Energies, MDPI, vol. 16(8), pages 1-3, April.
    2. Chang-Sung Jin & Chang-Min Kim & In-Jin Kim & Iksang Jang, 2021. "Proposed Commutation Method for Performance Improvement of Brushless DC Motor," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. Ibrahem Hussein & Zakariya Al-Hamouz & M. A. Abido & Abdulaziz Milhem, 2018. "On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity," Energies, MDPI, vol. 11(1), pages 1-17, January.
    4. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    5. Bo Yan & Xianglin Li & Yue Sun & Yingjie Tan, 2023. "End Effect Equivalence in the 2-D Finite Element Analysis of a Line-Start Permanent Magnet Synchronous Motor with Hybrid Solid Rotor," Energies, MDPI, vol. 16(19), pages 1-15, September.
    6. Hyunwoo Kim & Yeji Park & Seung-Taek Oh & Hyungkwan Jang & Sung-Hong Won & Yon-Do Chun & Ju Lee, 2020. "A Study on the Rotor Design of Line Start Synchronous Reluctance Motor for IE4 Efficiency and Improving Power Factor," Energies, MDPI, vol. 13(21), pages 1-15, November.
    7. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    8. Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    9. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    10. Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
    11. Ma, Shaohua & Wang, Shuli & Zhang, Chengning & Zhang, Shuo, 2017. "A method to improve the efficiency of an electric aircraft propulsion system," Energy, Elsevier, vol. 140(P1), pages 436-443.
    12. Phillip Schommarz & Rong-Jie Wang, 2022. "Development of a Transient Synchronization Analysis Tool for Line-Start PM Motors," Energies, MDPI, vol. 15(23), pages 1-31, December.
    13. Xiaoyu Liu & Qifang Lin & Weinong Fu, 2017. "Optimal Design of Permanent Magnet Arrangement in Synchronous Motors," Energies, MDPI, vol. 10(11), pages 1-16, October.
    14. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    15. Hongbo Qiu & Yong Zhang & Kaiqiang Hu & Cunxiang Yang & Ran Yi, 2019. "The Influence of Stator Winding Turns on the Steady-State Performances of Line-Start Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 12(12), pages 1-15, June.
    16. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3333-:d:378226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.