IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3174-d258819.html
   My bibliography  Save this article

Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles

Author

Listed:
  • Mustafa Tumbek

    (Department of Electric and Electronics Engineering, Pamukkale University, Kinikli, 20160 Denizli, Turkey)

  • Selami Kesler

    (Department of Electric and Electronics Engineering, Pamukkale University, Kinikli, 20160 Denizli, Turkey)

Abstract

Recently, while electric vehicles (EV) have substituted the fossil fuel vehicles, the design of the electrical motors with more efficient and less mechanical converters has become mandatory due to the weighting gears, mechanical differentials, and other cost-increasing parts. To overcome these problems, double electrical motors with low speed and high torque have been designed and used in the rear wheels of the EVs without any gearbox and mechanical differential. In this study, a novel outer rotor line-start hybrid synchronous motor is proposed as another solution. For this aim, four different hybrid rotor types, including magnets and rotor bars, have been designed and analyzed. Calculation and estimation of all parameters to design a motor are introduced. All of the analyses were carried out by Finite Elements Method (FEM). One of the analyzed motors, which is called Type-D was selected and implemented because of the best startup performance and better steady-state behavior under the rated load and overload. While holding this motor at synchronous speed under nominal load, in case of overloading, it remained in asynchronous mode, thus maintaining the sustainability of the system. Obtained results prove that the newly proposed outer rotor LSSM has the advantages of both synchronous motor and asynchronous motor. All of the experimental results validate the simulations well. The effects of the magnet alignments and dimensions on the performance of the motors are presented.

Suggested Citation

  • Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3174-:d:258819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengming Shu & Xiaoyong Zhu & Li Quan & Yi Du & Chang Liu, 2017. "Electromagnetic Performance Evaluation of an Outer-Rotor Flux-Switching Permanent Magnet Motor Based on Electrical-Thermal Two-Way Coupling Method," Energies, MDPI, vol. 10(5), pages 1-16, May.
    2. Jing Zhao & Yun Zheng & Congcong Zhu & Xiangdong Liu & Bin Li, 2017. "A Novel Modular-Stator Outer-Rotor Flux-Switching Permanent-Magnet Motor," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Hassanpour Isfahani, Arash & Vaez-Zadeh, Sadegh, 2009. "Line start permanent magnet synchronous motors: Challenges and opportunities," Energy, Elsevier, vol. 34(11), pages 1755-1763.
    4. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    5. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Yoshida & Jun Kitajima & Takashi Sakae & Mitsuhide Sato & Tsutomu Mizuno & Yuki Shimoda & Akihiro Kubota & Shogo Wada & Teruo Kichiji & Hideo Kumagai, 2022. "Effect of Magnetic Properties of Magnetic Composite Tapes on Motor Losses," Energies, MDPI, vol. 15(21), pages 1-16, October.
    2. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    3. Ying Zhou & Zuyu Wu & Yutong Wu, 2021. "Intelligent Permanent Magnet Motor-Based Servo Drive System Used for Automated Tuning of Piano," Energies, MDPI, vol. 14(20), pages 1-23, October.
    4. Armagan Bozkurt & Ahmet Fevzi Baba & Yusuf Oner, 2021. "Design of Outer-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.
    2. Jong Myung Kim & Jae Young Jang & Jaewon Chung & Young Jin Hwang, 2019. "A New Outer-Rotor Hybrid-Excited Flux-Switching Machine Employing the HTS Homopolar Topology," Energies, MDPI, vol. 12(14), pages 1-17, July.
    3. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    4. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    5. Yi Du & Wei Lu & Qi Wang & Xiaoyong Zhu & Li Quan, 2018. "Comparative Investigation of Hybrid Excitation Flux Switching Machines," Energies, MDPI, vol. 11(6), pages 1-16, June.
    6. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    7. Jung-Woo Kwon & Jin-hee Lee & Wenliang Zhao & Byung-Il Kwon, 2018. "Flux-Switching Permanent Magnet Machine with Phase-Group Concentrated-Coil Windings and Cogging Torque Reduction Technique," Energies, MDPI, vol. 11(10), pages 1-11, October.
    8. Ma, Shaohua & Wang, Shuli & Zhang, Chengning & Zhang, Shuo, 2017. "A method to improve the efficiency of an electric aircraft propulsion system," Energy, Elsevier, vol. 140(P1), pages 436-443.
    9. Phillip Schommarz & Rong-Jie Wang, 2022. "Development of a Transient Synchronization Analysis Tool for Line-Start PM Motors," Energies, MDPI, vol. 15(23), pages 1-31, December.
    10. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.
    11. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    12. Ahmed Belkhadir & Remus Pusca & Driss Belkhayat & Raphaël Romary & Youssef Zidani, 2023. "Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault," Energies, MDPI, vol. 16(7), pages 1-23, April.
    13. Jinlin Gong & Benteng Zhao & Youxi Huang & Eric Semail & Ngac Ky Nguyen, 2022. "Quantitative Comparisons of Outer-Rotor Permanent Magnet Machines of Different Structures/Phases for In-Wheel Electrical Vehicle Application," Energies, MDPI, vol. 15(18), pages 1-19, September.
    14. Ibrahem Hussein & Zakariya Al-Hamouz & M. A. Abido & Abdulaziz Milhem, 2018. "On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity," Energies, MDPI, vol. 11(1), pages 1-17, January.
    15. Konrad Urbanski & Dariusz Janiszewski, 2021. "Position Estimation at Zero Speed for PMSMs Using Artificial Neural Networks," Energies, MDPI, vol. 14(23), pages 1-17, December.
    16. Piotr Dukalski & Roman Krok, 2021. "Selected Aspects of Decreasing Weight of Motor Dedicated to Wheel Hub Assembly by Increasing Number of Magnetic Poles," Energies, MDPI, vol. 14(4), pages 1-27, February.
    17. Bo Yan & Xianglin Li & Yue Sun & Yingjie Tan, 2023. "End Effect Equivalence in the 2-D Finite Element Analysis of a Line-Start Permanent Magnet Synchronous Motor with Hybrid Solid Rotor," Energies, MDPI, vol. 16(19), pages 1-15, September.
    18. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    19. Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    20. Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3174-:d:258819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.