IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7254-d932370.html
   My bibliography  Save this article

Overview of Hybrid Excitation in Electrical Machines

Author

Listed:
  • Gustav Mörée

    (Division of Electricity, Department of Electrical Engineering, Uppsala University, 752 36 Uppsala, Sweden)

  • Mats Leijon

    (Division of Electricity, Department of Electrical Engineering, Uppsala University, 752 36 Uppsala, Sweden)

Abstract

Hybrid excitation is a technology that combines the advantages of field windings and permanent magnets for inducing magnetic flux. This article studies the benefits of hybrid excitation and provides an outlook on their possible applications, such as wind power generators and electric vehicle motors. Compared to permanent magnet-based machines, hybrid excitation gives a variable flux while still using the advantage of the permanent magnets for a portion of the flux. This article also looks into some different categories of machines developed for hybrid excitation. The categories are based on the reluctance circuit, the relative geometrical location of the field windings relative to the permanent magnets, or the placement of the excitation system.

Suggested Citation

  • Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7254-:d:932370
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Wardach & Pawel Prajzendanc & Ryszard Palka & Kamil Cierzniewski & Rafal Pstrokonski & Michal Cichowicz & Szymon Pacholski & Jakub Ciurus & Chen Hao, 2022. "Hybrid-Excited Permanent Magnet-Assisted Synchronous Reluctance Machine," Energies, MDPI, vol. 15(9), pages 1-13, April.
    2. Zhiyan Zhang & Ming Zhang & Jing Yin & Jie Wu & Cunxiang Yang, 2022. "An Analytical Method for Calculating the Cogging Torque of a Consequent Pole Hybrid Excitation Synchronous Machine Based on Spatial 3D Field Simplification," Energies, MDPI, vol. 15(3), pages 1-13, January.
    3. Haidar Diab & Yacine Amara & Sami Hlioui & Johannes J. H. Paulides, 2021. "Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion," Energies, MDPI, vol. 14(19), pages 1-23, September.
    4. Roberto Eduardo Quintal Palomo & Maciej Gwozdziewicz, 2020. "Effect of Demagnetization on a Consequent Pole IPM Synchronous Generator," Energies, MDPI, vol. 13(23), pages 1-13, December.
    5. Wenjing Hu & Xueyi Zhang & Hongbin Yin & Huihui Geng & Yufeng Zhang & Liwei Shi, 2020. "Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets," Energies, MDPI, vol. 13(6), pages 1-19, March.
    6. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    7. Amara, Yacine & Hlioui, Sami & Ben Ahmed, Hamid & Gabsi, Mohamed, 2021. "Pre-optimization of hybridization ratio in hybrid excitation synchronous machines using electrical circuits modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 118-136.
    8. Hassanpour Isfahani, Arash & Vaez-Zadeh, Sadegh, 2009. "Line start permanent magnet synchronous motors: Challenges and opportunities," Energy, Elsevier, vol. 34(11), pages 1755-1763.
    9. Yu Cao & Shushu Zhu & Junyue Yu & Chuang Liu, 2022. "Thermal Analysis of Dual-Axis-Direction Hybrid Excitation Generator for Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    10. Hoang, Trung-Kien & Vido, Lionel & Gillon, Frederic & Gabsi, Mohamed, 2019. "Structural optimization to maximize the flux control range of a double excitation synchronous machine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 235-247.
    11. Pawel Prajzendanc & Piotr Paplicki, 2022. "Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design," Energies, MDPI, vol. 15(8), pages 1-11, April.
    12. Marcin Wardach & Ryszard Palka & Piotr Paplicki & Pawel Prajzendanc & Tomasz Zarebski, 2020. "Modern Hybrid Excited Electric Machines," Energies, MDPI, vol. 13(22), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Kwang-Il Jeong & Reza Heidari & Do-Hyun Kang & Tae-Jun Ahn & Gwan Soo Park & Jin-Woo Ahn & Grace Firsta Lukman, 2023. "Magnetic Screen Effects on Torque Ripple and Efficiency of Dual Air-Gap Surface Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 16(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    2. Hau, Liya & Zhu, Huiming & Yu, Yang & Yu, Dongwei, 2022. "Time-frequency coherence and quantile causality between trade policy uncertainty and rare earth prices: Evidence from China and the US," Resources Policy, Elsevier, vol. 75(C).
    3. Audrius Bagdanavicius, 2022. "Energy and Exergy Analysis of Renewable Energy Conversion Systems," Energies, MDPI, vol. 15(15), pages 1-2, July.
    4. Pawel Prajzendanc & Piotr Paplicki, 2022. "Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design," Energies, MDPI, vol. 15(8), pages 1-11, April.
    5. Nikita Gobichettipalayam Boopathi & Manoj Shrivatsaan Muthuraman & Ryszad Palka & Marcin Wardach & Pawel Prajzendanc & Edison Gundabattini & Raja Singh Rassiah & Darius Gnanaraj Solomon, 2022. "Modeling and Simulation of Electric Motors Using Lightweight Materials," Energies, MDPI, vol. 15(14), pages 1-17, July.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    7. Ba, Bocar Samba & Combes-Motel, Pascale & Schwartz, Sonia, 2020. "Challenging pollution and the balance problem from rare earth extraction: how recycling and environmental taxation matter," Environment and Development Economics, Cambridge University Press, vol. 25(6), pages 634-656, December.
    8. Ma, Shaohua & Wang, Shuli & Zhang, Chengning & Zhang, Shuo, 2017. "A method to improve the efficiency of an electric aircraft propulsion system," Energy, Elsevier, vol. 140(P1), pages 436-443.
    9. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    10. Greenwood, Matthew & Wentker, Marc & Leker, Jens, 2021. "A region-specific raw material and lithium-ion battery criticality methodology with an assessment of NMC cathode technology," Applied Energy, Elsevier, vol. 302(C).
    11. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    12. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    13. Phillip Schommarz & Rong-Jie Wang, 2022. "Development of a Transient Synchronization Analysis Tool for Line-Start PM Motors," Energies, MDPI, vol. 15(23), pages 1-31, December.
    14. Surat Khan & Abdin Pasund & Naseer Ahmad & Shoaib Ahmed & Hamid Ali Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Performance Investigation and Cogging Torque Reduction in a Novel Modular Stator PM Flux Reversal Machine," Energies, MDPI, vol. 15(6), pages 1-20, March.
    15. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    16. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    17. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    18. Ibrahem Hussein & Zakariya Al-Hamouz & M. A. Abido & Abdulaziz Milhem, 2018. "On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity," Energies, MDPI, vol. 11(1), pages 1-17, January.
    19. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    20. Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7254-:d:932370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.