IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5774-d439820.html
   My bibliography  Save this article

A Study on the Rotor Design of Line Start Synchronous Reluctance Motor for IE4 Efficiency and Improving Power Factor

Author

Listed:
  • Hyunwoo Kim

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Yeji Park

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Seung-Taek Oh

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Hyungkwan Jang

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Sung-Hong Won

    (Department of Electrical Engineering, Dongyang Mirae University, Seoul 08221, Korea)

  • Yon-Do Chun

    (Electric Machines and Drives Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Ju Lee

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

As international regulations of motor efficiency are strengthened, the line-start synchronous reluctance motor (LS-SynRM) is being studied to improve the efficiency of the electrical motor in industrial applications. However, in industrial applications, the power factor is also an important performance index, but the LS-SynRM has poor power factor due to the saliency characteristic. In this paper, the rotor design of LS-SynRM is performed to improve the efficiency and power factor. First, the barrier design is performed to improve the efficiency and power factor using the response surface method (RSM). Second, the rotor slot design is performed according to the length of bar for synchronization. Lastly, the rib design is performed to satisfy the power factor and the mechanical reliability. The final model through the design process is analyzed using finite element analysis (FEA), and the objective performance is satisfied. To verify the FEA result, the final model is manufactured, and experiment is performed.

Suggested Citation

  • Hyunwoo Kim & Yeji Park & Seung-Taek Oh & Hyungkwan Jang & Sung-Hong Won & Yon-Do Chun & Ju Lee, 2020. "A Study on the Rotor Design of Line Start Synchronous Reluctance Motor for IE4 Efficiency and Improving Power Factor," Energies, MDPI, vol. 13(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5774-:d:439820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunwoo Kim & Yeji Park & Huai-Cong Liu & Pil-Wan Han & Ju Lee, 2020. "Study on Line-Start Permanent Magnet Assistance Synchronous Reluctance Motor for Improving Efficiency and Power Factor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    2. Pavol Rafajdus & Valeria Hrabovcova & Pavel Lehocky & Pavol Makys & Filip Holub, 2018. "Effect of Saturation on Field Oriented Control of the New Designed Reluctance Synchronous Motor," Energies, MDPI, vol. 11(11), pages 1-10, November.
    3. Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii & Safarbek Oshurbekov & Dmitry Golovanov, 2020. "Life Cycle Energy Cost Assessment for Pump Units with Various Types of Line-Start Operating Motors Including Cable Losses," Energies, MDPI, vol. 13(14), pages 1-15, July.
    4. Nezih Gokhan Ozcelik & Ugur Emre Dogru & Murat Imeryuz & Lale T. Ergene, 2019. "Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison," Energies, MDPI, vol. 12(11), pages 1-20, June.
    5. Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii & Mohamed N. Ibrahim & Safarbek Oshurbekov & Sergey Sarapulov, 2019. "Efficiency Analysis of Low Electric Power Drives Employing Induction and Synchronous Reluctance Motors in Pump Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.
    6. Ying Xie & Cheng Pi & Zhiwei Li, 2019. "Study on Design and Vibration Reduction Optimization of High Starting Torque Induction Motor," Energies, MDPI, vol. 12(7), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Prakht & Mohamed N. Ibrahim & Vadim Kazakbaev, 2023. "Energy Efficiency Improvement of Electric Machines without Rare-Earth Magnets," Energies, MDPI, vol. 16(8), pages 1-3, April.
    2. Chang-Sung Jin & Chang-Min Kim & In-Jin Kim & Iksang Jang, 2021. "Proposed Commutation Method for Performance Improvement of Brushless DC Motor," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyunwoo Kim & Yeji Park & Huai-Cong Liu & Pil-Wan Han & Ju Lee, 2020. "Study on Line-Start Permanent Magnet Assistance Synchronous Reluctance Motor for Improving Efficiency and Power Factor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    2. Vladimir Prakht & Mohamed N. Ibrahim & Vadim Kazakbaev, 2023. "Energy Efficiency Improvement of Electric Machines without Rare-Earth Magnets," Energies, MDPI, vol. 16(8), pages 1-3, April.
    3. Florin Pop-Pîgleşan & Adrian-Cornel Pop & Claudia Marțiş, 2021. "Synchronous Reluctance Machines for Automotive Cooling Fan Systems: Numerical and Experimental Study of Different Slot-Pole Combinations and Winding Types," Energies, MDPI, vol. 14(2), pages 1-28, January.
    4. Giovanni Bucci & Fabrizio Ciancetta & Edoardo Fiorucci & Simone Mari & Maria Anna Segreto, 2019. "The Measurement of Additional Losses in Induction Motors: Discussion about the Actually Achievable Uncertainty," Energies, MDPI, vol. 13(1), pages 1-13, December.
    5. Victor Goman & Vladimir Prakht & Vadim Kazakbaev & Vladimir Dmitrievskii, 2021. "Comparative Study of Energy Consumption and CO 2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    6. Paweł Idziak & Krzysztof Kowalski, 2021. "Analysis of Selected Operating States of the Line Start Synchronous Reluctance Motor Using the Finite Element Method," Energies, MDPI, vol. 14(20), pages 1-18, October.
    7. Yuanzhe Zhao & Linjie Ren & Zhiming Liao & Guobin Lin, 2021. "A Novel Model Predictive Direct Torque Control Method for Improving Steady-State Performance of the Synchronous Reluctance Motor," Energies, MDPI, vol. 14(8), pages 1-18, April.
    8. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
    9. Petr Kacor & Petr Bernat & Petr Moldrik, 2021. "Utilization of Two Sensors in Offline Diagnosis of Squirrel-Cage Rotors of Asynchronous Motors," Energies, MDPI, vol. 14(20), pages 1-23, October.
    10. Chiweta E. Abunike & Udochukwu B. Akuru & Ogbonnaya I. Okoro & Chukwuemeka C. Awah, 2023. "Sizing, Modeling, and Performance Comparison of Squirrel-Cage Induction and Wound-Field Flux Switching Motors," Mathematics, MDPI, vol. 11(16), pages 1-24, August.
    11. Vadim Kazakbaev & Safarbek Oshurbekov & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Feasibility Study of Direct-on-Line Energy-Efficient Motors in a Pumping Unit, Considering Reactive Power Compensation," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    12. Zheng Cao & Yuanjun Zhou & Na Wang, 2020. "Starting Pulse Vibration Torque Analysis of Aviation Variable Frequency Asynchronous Motor Based on Low-Frequency Step-Down Starting Methods," Energies, MDPI, vol. 13(6), pages 1-18, March.
    13. Linjie Ren & Guobin Lin & Yuanzhe Zhao & Zhiming Liao, 2021. "Smart Collaborative Performance-Induced Parameter Identification Algorithms for Synchronous Reluctance Machine Magnetic Model," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    14. Gyeong Uk Jang & Seunghyeon Cho & Jaemin Moon & Kyunghun Jeon & Chang-wan Kim, 2021. "Topology Optimization to Reduce Electromagnetic Force Induced Vibration for the Specific Frequency of PMSM Motor Using Electromagnetic-Structural Coupled Analysis," Energies, MDPI, vol. 14(2), pages 1-13, January.
    15. Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii & Safarbek Oshurbekov & Dmitry Golovanov, 2020. "Life Cycle Energy Cost Assessment for Pump Units with Various Types of Line-Start Operating Motors Including Cable Losses," Energies, MDPI, vol. 13(14), pages 1-15, July.
    16. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Ildo Luis Sauer & Hédio Tatizawa, 2021. "Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings," Energies, MDPI, vol. 14(21), pages 1-13, November.
    17. Duc-Kien Ngo & Min-Fu Hsieh, 2019. "Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet," Energies, MDPI, vol. 12(18), pages 1-20, September.
    18. Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    19. Chang-Sung Jin & Chang-Min Kim & In-Jin Kim & Iksang Jang, 2021. "Proposed Commutation Method for Performance Improvement of Brushless DC Motor," Energies, MDPI, vol. 14(19), pages 1-16, September.
    20. Rajesh Poola & Tsuyoshi Hanamoto, 2022. "Automated QFT-Based PI Tuning for Speed Control of SynRM Drive with Analytical Selection of QFT Control Specifications," Energies, MDPI, vol. 15(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5774-:d:439820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.