IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8603-d975144.html
   My bibliography  Save this article

Virtual Modeling and Experimental Validation of the Line-Start Permanent Magnet Motor in the Presence of Harmonics

Author

Listed:
  • Jonathan Muñoz Tabora

    (Amazon Energy Efficiency Center (CEAMAZON), Federal University of Pará, Belém 66075-110, Brazil)

  • Bendict Katukula Tshoombe

    (Amazon Energy Efficiency Center (CEAMAZON), Federal University of Pará, Belém 66075-110, Brazil)

  • Wellington da Silva Fonseca

    (Amazon Energy Efficiency Center (CEAMAZON), Federal University of Pará, Belém 66075-110, Brazil)

  • Maria Emília de Lima Tostes

    (Amazon Energy Efficiency Center (CEAMAZON), Federal University of Pará, Belém 66075-110, Brazil)

  • Edson Ortiz de Matos

    (Amazon Energy Efficiency Center (CEAMAZON), Federal University of Pará, Belém 66075-110, Brazil)

  • Ubiratan Holanda Bezerra

    (Amazon Energy Efficiency Center (CEAMAZON), Federal University of Pará, Belém 66075-110, Brazil)

  • Marcelo de Oliveira e Silva

    (Postgraduate Program in Mechanical Engineering, Federal University of Pará, Belém 66075-110, Brazil)

Abstract

The world is experiencing an accelerated energy transition that is driven by the climate goals to be met and that has driven the growth of different potential sectors such as electric mobility powered by electric motors, which continue to be the largest load globally. However, new needs in relation to power density, weight, and efficiency have led manufacturers to experiment with new technologies, such as rare earth elements (REEs). The permanent magnet motor is a candidate to be the substitute for the conventional induction motor considering the new editions of the IEC 60034-30-1, for which study and evaluation continue to be focused on identifying the weaknesses and benefits of its application on a large scale in industry and electric mobility. This work presents a FEM model to assess the line-start permanent magnet motor (LSPMM), aiming to simulate the behavior of the LSPMM under supply conditions with distorted voltages (harmonic content) and evaluate its thermal and magnetic performance. The model created in the FEM software is then validated by bench tests in order to constitute an alternative analysis tool that can be used for studies in previous project phases and even to implement predictive maintenance schemes in industries.

Suggested Citation

  • Jonathan Muñoz Tabora & Bendict Katukula Tshoombe & Wellington da Silva Fonseca & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Ubiratan Holanda Bezerra & Marcelo de Oliveira e Silva, 2022. "Virtual Modeling and Experimental Validation of the Line-Start Permanent Magnet Motor in the Presence of Harmonics," Energies, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8603-:d:975144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Xu & Lijun Zhang & Deijian Meng & Hui Su, 2022. "Simulation, Verification and Optimization Design of Electromagnetic Vibration and Noise of Permanent Magnet Synchronous Motor for Vehicle," Energies, MDPI, vol. 15(16), pages 1-16, August.
    2. Xiaoyu Liu & Qifang Lin & Weinong Fu, 2017. "Optimal Design of Permanent Magnet Arrangement in Synchronous Motors," Energies, MDPI, vol. 10(11), pages 1-16, October.
    3. Lucia Frosini & Marco Pastura, 2020. "Analysis and Design of Innovative Magnetic Wedges for High Efficiency Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 13(1), pages 1-21, January.
    4. Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitsuhide Sato & Keigo Takazawa & Manabu Horiuchi & Ryoken Masuda & Ryo Yoshida & Masami Nirei & Yinggang Bu & Tsutomu Mizuno, 2020. "Reducing Rotor Temperature Rise in Concentrated Winding Motor by Using Magnetic Powder Mixed Resin Ring," Energies, MDPI, vol. 13(24), pages 1-15, December.
    2. Klemen Drobnič & Lovrenc Gašparin & Rastko Fišer, 2019. "Fast and Accurate Model of Interior Permanent-Magnet Machine for Dynamic Characterization," Energies, MDPI, vol. 12(5), pages 1-20, February.
    3. Adrian Mlot & Juan González, 2020. "Performance Assessment of Axial-Flux Permanent Magnet Motors from a Manual Manufacturing Process," Energies, MDPI, vol. 13(8), pages 1-15, April.
    4. Jinshun Hao & Shuangfu Suo & Yiyong Yang & Yang Wang & Wenjie Wang, 2019. "Power Density Analysis and Optimization of SMPMSM Based on FEM, DE Algorithm and Response Surface Methodology," Energies, MDPI, vol. 12(19), pages 1-9, September.
    5. Artur Piščalov & Edgaras Urbonas & Darius Vainorius & Jonas Matijošius & Artūras Kilikevičius, 2021. "Investigation of X and Y Configuration Modal and Dynamic Response to Velocity Excitation of the Nanometer Resolution Linear Servo Motor Stage with Quasi-Industrial Guiding System in Quasi-Stable State," Mathematics, MDPI, vol. 9(9), pages 1-25, April.
    6. Wei Chen & Jiaojiao Liang & Tingna Shi, 2018. "Speed Synchronous Control of Multiple Permanent Magnet Synchronous Motors Based on an Improved Cross-Coupling Structure," Energies, MDPI, vol. 11(2), pages 1-16, January.
    7. Andrzej Łebkowski, 2018. "Reduction of Fuel Consumption and Pollution Emissions in Inland Water Transport by Application of Hybrid Powertrain," Energies, MDPI, vol. 11(8), pages 1-16, July.
    8. Plamena Dinolova & Vyara Ruseva & Ognyan Dinolov, 2023. "Energy Efficiency of Induction Motor Drives: State of the Art, Analysis and Recommendations," Energies, MDPI, vol. 16(20), pages 1-26, October.
    9. Marcel Torrent & José Ignacio Perat & José Antonio Jiménez, 2018. "Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains," Energies, MDPI, vol. 11(6), pages 1-17, June.
    10. Myeong-Hwan Hwang & Jong-Ho Han & Dong-Hyun Kim & Hyun-Rok Cha, 2018. "Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms," Energies, MDPI, vol. 11(10), pages 1-12, September.
    11. Wuqiang Wang & Yong Li & Dajun Huan & Xiaodong Chen & Hongquan Liu & Yanrui Li & Lisha Li, 2022. "Research on Stress Design and Manufacture of the Fiber-Reinforced Composite Sleeve for the Rotor of High-Speed Permanent Magnet Motor," Energies, MDPI, vol. 15(7), pages 1-22, March.
    12. Dongming Li & Guihong Feng & Wei Li & Bingyi Zhang & Jiaxu Zhang, 2022. "Effect of Stator Slots on Electromagnetic Performance of a High-Voltage Line-Start Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-18, May.
    13. Pedram Asef & Ramon Bargallo & Andrew Lapthorn & Davide Tavernini & Lingyun Shao & Aldo Sorniotti, 2021. "Assessment of the Energy Consumption and Drivability Performance of an IPMSM-Driven Electric Vehicle Using Different Buried Magnet Arrangements," Energies, MDPI, vol. 14(5), pages 1-22, March.
    14. Vijina Abhijith & M. J. Hossain & Gang Lei & Premlal Ajikumar Sreelekha & Tibinmon Pulimoottil Monichan & Sree Venkateswara Rao, 2022. "Hybrid Switched Reluctance Motors for Electric Vehicle Applications with High Torque Capability without Permanent Magnet," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8603-:d:975144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.