IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6454-d457731.html
   My bibliography  Save this article

An Advanced Exergoeconomic Comparison of CO 2 -Based Transcritical Refrigeration Cycles

Author

Listed:
  • J. M. Belman-Flores

    (Department of Mechanical Engineering, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Guanajuato 36885, Mexico)

  • V. H. Rangel-Hernández

    (Department of Mechanical Engineering, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Guanajuato 36885, Mexico
    Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany)

  • V. Pérez-García

    (Department of Mechanical Engineering, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Guanajuato 36885, Mexico)

  • A. Zaleta-Aguilar

    (Department of Mechanical Engineering, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Guanajuato 36885, Mexico)

  • Qingping Fang

    (Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany)

  • D. Méndez-Méndez

    (Department of Mechanical Engineering, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Guanajuato 36885, Mexico)

Abstract

CO 2 -based transcritical refrigeration cycles are currently gaining significant research attention, as they offer a viable solution to the use of natural refrigerants (e.g., CO 2 ). However, there are almost no papers that offer an exergoeconomic comparison between the different configurations of these types of systems. Accordingly, the present work deals with a comparative exergoeconomic analysis of four different CO 2 -based transcritical refrigeration cycles. In addition, the work is complemented by an analysis of the CO 2 abatement costs. The influences of the variation of the evaporating temperature, the gas cooler outlet temperature, and the pressure ratio on the exergy efficiency, product cost rate, exergy destruction cost rate, exergoeconomic factor, and CO 2 penalty cost rate are compared in detail. The results show that the transcritical cycle with the ejector has the lowest exergetic product cost and a low environmental impact.

Suggested Citation

  • J. M. Belman-Flores & V. H. Rangel-Hernández & V. Pérez-García & A. Zaleta-Aguilar & Qingping Fang & D. Méndez-Méndez, 2020. "An Advanced Exergoeconomic Comparison of CO 2 -Based Transcritical Refrigeration Cycles," Energies, MDPI, vol. 13(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6454-:d:457731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
    2. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    3. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi, 2018. "A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 513-527.
    4. Garousi Farshi, L. & Mahmoudi, S.M.S. & Rosen, M.A., 2013. "Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 103(C), pages 700-711.
    5. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    2. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    3. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    4. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    5. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    6. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    7. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    8. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    9. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    10. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    11. Lee, Yee-Ting & Hong, Sihui & Chien, Liang-Han & Lin, Chih-Jer & Yang, An-Shik, 2020. "Heat transfer and pressure drop of film condensation in a horizontal minitube for HFO1234yf refrigerant," Applied Energy, Elsevier, vol. 274(C).
    12. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    13. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    14. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    15. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    16. Athari, Hassan & Soltani, Saeed & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A. & Morosuk, Tatiana, 2014. "Exergoeconomic analysis of a biomass post-firing combined-cycle power plant," Energy, Elsevier, vol. 77(C), pages 553-561.
    17. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    18. Kashish Kumar & Alok Singh, 2022. "Economic and Experimental Assessment of KCOOH Hybrid Liquid Desiccant-Vapor Compression System," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    19. Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
    20. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6454-:d:457731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.