IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4222-d399298.html
   My bibliography  Save this article

Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process

Author

Listed:
  • Jianjun Ye

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhenhua Zhao

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jinyang Zheng

    (Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China)

  • Shehab Salem

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jiangcun Yu

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Junxu Cui

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiaoyi Jiao

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In high-pressure hydrogen systems, the check valve is one of the most easy-to-damage components. Generally, the high-pressure hydrogen flow can generate a strong impact on the check valve, which can cause damage and failure. Therefore, it is useful to study the transient flow characteristics of the high-pressure hydrogen flow in check valves. Using dynamic mesh generation and the National Institute of Standards and Technology (NIST) real hydrogen gas model, a transient-flow model of the high-pressure hydrogen for the check valve is established. First, the flow properties of high-pressure hydrogen during the opening process is investigated, and velocity changes and pressure distribution of hydrogen gas flow are studied. In addition, the fluid force, acceleration, and velocity of the valve spool are analyzed quantitatively. Subsequently, the effect of the hydrogen inlet-pressure on the movement characteristic of the valve spool is investigated. The results of this study can improve both the design and applications of check valves in high-pressure hydrogen systems.

Suggested Citation

  • Jianjun Ye & Zhenhua Zhao & Jinyang Zheng & Shehab Salem & Jiangcun Yu & Junxu Cui & Xiaoyi Jiao, 2020. "Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process," Energies, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4222-:d:399298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Muratori & Brian Bush & Chad Hunter & Marc W. Melaina, 2018. "Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †," Energies, MDPI, vol. 11(5), pages 1-14, May.
    2. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Young Min Kim & Dong Gil Shin & Chang Gi Kim, 2019. "On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process," Energies, MDPI, vol. 12(3), pages 1-10, February.
    4. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    5. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2022. "Analysis of Energy Loss on a Tunable Check Valve through the Numerical Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.
    2. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2024. "Adjustment of Proportional Control Valve Characteristics via Pressure Compensation Using Flow Forces," Energies, MDPI, vol. 17(7), pages 1-19, March.
    3. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2021. "Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method," Energies, MDPI, vol. 14(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    2. Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
    3. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    5. Christoph Sejkora & Johannes Lindorfer & Lisa Kühberger & Thomas Kienberger, 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria," Energies, MDPI, vol. 14(19), pages 1-38, October.
    6. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    7. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    8. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    9. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    10. Oscar Lopez Jaramillo & Joel Rinebold & Michael Kuby & Scott Kelley & Darren Ruddell & Rhian Stotts & Aimee Krafft & Elizabeth Wentz, 2021. "Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration," Energies, MDPI, vol. 14(22), pages 1-26, November.
    11. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    12. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    13. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    14. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    15. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Amandeep Singh Oberoi & Parag Nijhawan & Parminder Singh, 2018. "A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage," Energies, MDPI, vol. 12(1), pages 1-15, December.
    17. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    18. Superchi, Francesco & Mati, Alessandro & Carcasci, Carlo & Bianchini, Alessandro, 2023. "Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking," Applied Energy, Elsevier, vol. 342(C).
    19. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    20. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4222-:d:399298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.