IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p82-d193648.html
   My bibliography  Save this article

A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage

Author

Listed:
  • Amandeep Singh Oberoi

    (Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala-147004, India)

  • Parag Nijhawan

    (Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala-147004, India)

  • Parminder Singh

    (Chemical Engineering Department, Thapar Institute of Engineering and Technology, Patiala-147004, India)

Abstract

The inherently variable nature of renewable energy sources makes them storage-dependent when providing a reliable and continuous energy supply. One feasible energy-storage option that could meet this challenge is storing surplus renewable energy in the form of hydrogen. In this context, storage of hydrogen electrochemically in porous carbon-based electrodes is investigated. Measurements of hydrogen storage capacity, proton conductivity, and capacitance due to electrical double layer of several porous activated carbon electrodes are reported. The hydrogen storage capacity of the tested electrodes is found in the range of 0.61−1.05 wt.%, which compares favorably with commercially available metal hydride-based hydrogen storage, lithium polymer batteries, and lithium ion batteries in terms of gravimetric energy density. The highest obtained proton conductivity was 0.0965 S/cm, which is near to that of the commercial polymer-based proton conductor, nafion 117, under fully hydrated conditions. The obtained capacitance due to double-layers of the tested electrodes was in the range of 28.3–189.4 F/g. The relationship between specific surface area, micropore volume and hydrogen storage capacity of the carbon electrodes is discussed. The contribution of capacitance to the equivalent hydrogen storage capacity of carbon electrodes is reported. The implications of the obtained experimental results are discussed.

Suggested Citation

  • Amandeep Singh Oberoi & Parag Nijhawan & Parminder Singh, 2018. "A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage," Energies, MDPI, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:82-:d:193648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/82/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/82/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    2. Ernest Cortez & Manuel Moreno-Eguilaz & Francisco Soriano, 2018. "Advanced Methodology for the Optimal Sizing of the Energy Storage System in a Hybrid Electric Refuse Collector Vehicle Using Real Routes," Energies, MDPI, vol. 11(12), pages 1-17, November.
    3. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    4. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    5. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    2. Meriläinen, Altti & Montonen, Jan-Henri & Hopsu, Jeremias & Kosonen, Antti & Lindh, Tuomo & Ahola, Jero, 2023. "Power balance control and dimensioning of a hybrid off-grid energy system for a Nordic climate townhouse," Renewable Energy, Elsevier, vol. 209(C), pages 310-324.
    3. Deveci, Muhammet & Gokasar, Ilgin & Chen, Yu & Wang, Weizhong & Karaismailoğlu, Ali Eren & Antucheviciene, Jurgita, 2025. "Analysis of green energy in sustainable transportation in developing nations through a decision support model," Renewable Energy, Elsevier, vol. 244(C).
    4. George E. Halkos & Eleni-Christina Gkampoura, 2020. "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-19, June.
    5. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    6. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Alias Jedi & Sohif Mat & Kamaruzzaman Sopian & Azman Bin Abdul Rahim & Azami Zaharim, 2020. "Rural Public Acceptance of Wind and Solar Energy: A Case Study from Mersing, Malaysia," Energies, MDPI, vol. 13(15), pages 1-24, July.
    7. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    8. Jerez, S. & Tobin, I. & Turco, M. & Jiménez-Guerrero, P. & Vautard, R. & Montávez, J.P., 2019. "Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe," Renewable Energy, Elsevier, vol. 139(C), pages 251-260.
    9. Halkos, George & Gkampoura, Eleni-Christina, 2021. "Reviewing the 17 Sustainable Development Goals: Importance and Progress," MPRA Paper 105329, University Library of Munich, Germany.
    10. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    12. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    13. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    14. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    15. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    16. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    17. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    18. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    19. Adil Ashraf & Mohammed Basheer & Jose M. Gonzalez & Eduardo A. Martínez Ceseña & Mikiyas Etichia & Emmanuel Obuobie & Andrea Bottacin-Busolin & Jan Adamowski & Mathaios Panteli & Julien J. Harou, 2025. "Delivering equity in low-carbon multisector infrastructure planning," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    20. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:82-:d:193648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.