IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p3017-d370412.html
   My bibliography  Save this article

Stochastic Modeling of the Levelized Cost of Electricity for Solar PV

Author

Listed:
  • Chul-Yong Lee

    (School of Business, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea)

  • Jaekyun Ahn

    (Korea Energy Economics Institute, 405-11, Jongga-ro, Jung-Gu, Ulsan 44543, Korea)

Abstract

With the development of renewable energy, a key measure for reducing greenhouse gas emissions, interest in the levelized cost of electricity (LCOE) is increasing. Although the input variables used in the LCOE calculation, such as capacity factor, capital expenditure, annual power plant operations and maintenance cost, discount and interest rate, and economic life, vary according to region and project, most existing studies estimate the LCOE by using a deterministic methodology. In this study, the stochastic approach was used to estimate the LCOE for solar photovoltaic (PV) in South Korea. In addition, this study contributed to deriving realistic analysis results by securing the actual data generated in the solar PV project compared to the existing studies. The results indicate that the LCOE for commercial solar power ranged from KRW 115 (10 cents)/kWh to KRW 197.4 (18 cents)/kWh at a confidence level of 95%. The median was estimated at KRW 160.03 (15 cents)/kWh. The LCOE for residential solar power ranged from KRW 109.7 (10 cents)/kWh to KRW 194.1 (18 cents)/kWh at a 95% confidence level and a median value of KRW 160.03 (15 cents)/kWh. A sensitivity analysis shows that capital expenditure has the most significant impact on the LCOE for solar power, followed by the discount rate and corporate tax. This study proposes that policymakers implement energy policies to reduce solar PV hardware and soft costs.

Suggested Citation

  • Chul-Yong Lee & Jaekyun Ahn, 2020. "Stochastic Modeling of the Levelized Cost of Electricity for Solar PV," Energies, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3017-:d:370412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/3017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/3017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    2. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    3. Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
    4. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    5. Klaniecki, Kathleen & Duse, Ioana Alexandra & Lutz, Lotte M. & Leventon, Julia & Abson, David J., 2020. "Applying the energy cultures framework to understand energy systems in the context of rural sustainability transformation," Energy Policy, Elsevier, vol. 137(C).
    6. Barreto,Humberto & Howland,Frank, 2006. "Introductory Econometrics," Cambridge Books, Cambridge University Press, number 9780521843195.
    7. López, Andrea Ruíz & Krumm, Alexandra & Schattenhofer, Lukas & Burandt, Thorsten & Montoya, Felipe Corral & Oberländer, Nora & Oei, Pao-Yu, 2020. "Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 148, pages 1266-1279.
    8. Thomas Poulsen & Charlotte Bay Hasager & Christian Munk Jensen, 2017. "The Role of Logistics in Practical Levelized Cost of Energy Reduction Implementation and Government Sponsored Cost Reduction Studies: Day and Night in Offshore Wind Operations and Maintenance Logistic," Energies, MDPI, vol. 10(4), pages 1-28, April.
    9. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    10. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    11. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    12. Rhodes, Joshua D. & King, Carey & Gulen, Gürcan & Olmstead, Sheila M. & Dyer, James S. & Hebner, Robert E. & Beach, Fred C. & Edgar, Thomas F. & Webber, Michael E., 2017. "A geographically resolved method to estimate levelized power plant costs with environmental externalities," Energy Policy, Elsevier, vol. 102(C), pages 491-499.
    13. Clauser, Christoph & Ewert, Markus, 2018. "The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy – Review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3683-3693.
    14. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    15. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).
    16. Mendicino, Luca & Menniti, Daniele & Pinnarelli, Anna & Sorrentino, Nicola, 2019. "Corporate power purchase agreement: Formulation of the related levelized cost of energy and its application to a real life case study," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Sung-Hyun Hwang & Mun-Kyeom Kim & Ho-Sung Ryu, 2019. "Real Levelized Cost of Energy with Indirect Costs and Market Value of Variable Renewables: A Study of the Korean Power Market," Energies, MDPI, vol. 12(13), pages 1-18, June.
    18. Wang, Xiaoting & Kurdgelashvili, Lado & Byrne, John & Barnett, Allen, 2011. "The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4248-4254.
    19. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    20. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    21. López, Andrea Ruíz & Krumm, Alexandra & Schattenhofer, Lukas & Burandt, Thorsten & Montoya, Felipe Corral & Oberländer, Nora & Oei, Pao-Yu, 2020. "Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market," Renewable Energy, Elsevier, vol. 148(C), pages 1266-1279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    2. Ding, Liping & Zhang, Zumeng & Dai, Qiyao & Zhu, Yuxuan & Shi, Yin, 2023. "Alternative operational modes for Chinese PV poverty alleviation power stations: Economic impacts on stakeholders," Utilities Policy, Elsevier, vol. 82(C).
    3. Sławomir Skiba & Marianna Maruszczak, 2022. "The Impact of the COVID-19 Pandemic on the Decision to Use Solar Energy and Install Photovoltaic Panels in Households in the Years 2019–2021 within the Area of a Selected Polish Municipality," Energies, MDPI, vol. 15(19), pages 1-14, October.
    4. Luka Budin & Goran Grdenić & Marko Delimar, 2021. "A Quadratically Constrained Optimization Problem for Determining the Optimal Nominal Power of a PV System in Net-Metering Model: A Case Study for Croatia," Energies, MDPI, vol. 14(6), pages 1-23, March.
    5. Manoel Henriques de Sá Campos & Chigueru Tiba, 2021. "npTrack: A n-Position Single Axis Solar Tracker Model for Optimized Energy Collection," Energies, MDPI, vol. 14(4), pages 1-13, February.
    6. Iurii Prokazov & Vladimir Gorbanyov & Vadim Samusenkov & Irina Razinkina & Monika Chłąd, 2021. "Assessing the Flexibility of Renewable Energy Multinational Corporations," Energies, MDPI, vol. 14(13), pages 1-19, June.
    7. Ivan A Kapitonov & Andrejs Vilks, 2022. "RETRACTED: Economic regulation of energy costs when integrated into distribution networks of industrial enterprises," Energy & Environment, , vol. 33(3), pages 435-448, May.
    8. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    9. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    10. Sylwester Kaczmarzewski & Piotr Olczak & Maciej Sołtysik, 2021. "The Impact of Electricity Consumption Profile in Underground Mines to Cooperate with RES," Energies, MDPI, vol. 14(18), pages 1-20, September.
    11. Oyeniyi A. Alimi & Edson L. Meyer & Olufemi I. Olayiwola, 2022. "Solar Photovoltaic Modules’ Performance Reliability and Degradation Analysis—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
    12. Kosmadakis, Ioannis E. & Elmasides, Costas & Koulinas, Georgios & Tsagarakis, Konstantinos P., 2021. "Energy unit cost assessment of six photovoltaic-battery configurations," Renewable Energy, Elsevier, vol. 173(C), pages 24-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    3. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    4. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    5. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    6. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    7. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    8. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    9. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
    10. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    11. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    13. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    14. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
    15. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    16. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    17. Luis Fernando Grisales-Noreña & Brandon Cortés-Caicedo & Gerardo Alcalá & Oscar Danilo Montoya, 2023. "Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    18. Wilhelm Kuckshinrichs, 2021. "LCOE: A Useful and Valid Indicator—Replica to James Loewen and Adam Szymanski," Energies, MDPI, vol. 14(2), pages 1-8, January.
    19. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    20. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3017-:d:370412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.