IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2741-d364879.html
   My bibliography  Save this article

Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy

Author

Listed:
  • Calliope Panoutsou

    (Centre for Environmental Policy, Imperial College London, 16-18 Prince’s Gardens, London SW7 1NE, UK)

  • David Chiaramonti

    (“Galileo Ferraris” Energy Department, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy
    RE-CORD, Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

Substantial areas of agricultural land in south European countries are becoming increasingly marginal and being abandoned due to arid climate with prolonged summers and low rainfall. Perennial, lignocellulosic crops, such as Miscanthus, offer an outlet that couples agriculture with energy, creates employment, and increases profits from feedstock production in rural areas. This research paper follows an Input Output methodology and uses an econometric model to investigate the impact of crop yielding performance and marginal land to jobs and profit from the cultivation and supply of Miscanthus in low quality, marginal land in Italy and Greece. Two value chain cases are analysed: small scale Combined Heat and Power (CHP) and Fast Pyrolysis Bio Oil (FPBO). The cultivation of Miscanthus in both reference value chains exhibits good employment prospects, with smaller scale value chains creating more labour-intensive logistics operations. The activities can also generate substantial financial profit especially with higher crop yields. Results show a pronounced relationship between profitability and crop yield for both reference value chains - cultivation and supply operations become more profitable with increasing yield. It is, therefore, important to achieve higher yields through good cropping practices, while maintaining high levels of environmental sustainability.

Suggested Citation

  • Calliope Panoutsou & David Chiaramonti, 2020. "Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy," Energies, MDPI, vol. 13(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2741-:d:364879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zafeiriou, Eleni & Petridis, Konstantinos & Karelakis, Christos & Arabatzis, Garyfallos, 2016. "Optimal combination of energy crops under different policy scenarios; The case of Northern Greece," Energy Policy, Elsevier, vol. 96(C), pages 607-616.
    2. Fazio, Simone & Barbanti, Lorenzo, 2014. "Energy and economic assessments of bio-energy systems based on annual and perennial crops for temperate and tropical areas," Renewable Energy, Elsevier, vol. 69(C), pages 233-241.
    3. Calliope Panoutsou, 2016. "The role of sustainable biomass in the heat market sector for EU27," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 430-450, July.
    4. Panoutsou, Calliope, 2007. "Socio-economic impacts of energy crops for heat generation in Northern Greece," Energy Policy, Elsevier, vol. 35(12), pages 6046-6059, December.
    5. Vamvuka, D. & Sfakiotakis, S., 2011. "Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics," Renewable Energy, Elsevier, vol. 36(9), pages 2433-2439.
    6. Thornley, Patricia & Rogers, John & Huang, Ye, 2008. "Quantification of employment from biomass power plants," Renewable Energy, Elsevier, vol. 33(8), pages 1922-1927.
    7. Convery, I. & Robson, D. & Ottitsch, A. & Long, M., 2012. "The willingness of farmers to engage with bioenergy and woody biomass production: A regional case study from Cumbria," Energy Policy, Elsevier, vol. 40(C), pages 293-300.
    8. Mantziaris, Stamatis & Iliopoulos, Constantine & Theodorakopoulou, Irini & Petropoulou, Eugenia, 2017. "Perennial energy crops vs. durum wheat in low input lands: Economic analysis of a Greek case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 789-800.
    9. Fontaras, Georgios & Skoulou, Vassiliki & Zanakis, Georgios & Zabaniotou, Anastasia & Samaras, Zissis, 2012. "Integrated environmental assessment of energy crops for biofuel and energy production in Greece," Renewable Energy, Elsevier, vol. 43(C), pages 201-209.
    10. Calliope Panoutsou & Efthymia Alexopoulou, 2020. "Costs and Profitability of Crops for Bioeconomy in the EU," Energies, MDPI, vol. 13(5), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Traverso L. & Mazzoli E. & Miller C. & Pulighe G. & Perelli C. & Morese M. M. & Branca G., 2021. "Cost Benefit and Risk Analysis of Low iLUC Bioenergy Production in Europe Using Monte Carlo Simulation," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Cosette Khawaja & Rainer Janssen & Rita Mergner & Dominik Rutz & Marco Colangeli & Lorenzo Traverso & Maria Michela Morese & Manuela Hirschmugl & Carina Sobe & Alfonso Calera & David Cifuentes & Stefa, 2021. "Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine," Energies, MDPI, vol. 14(6), pages 1-21, March.
    3. Tavseef Mairaj Shah & Anzar Hussain Khan & Cherisa Nicholls & Ihsanullah Sohoo & Ralf Otterpohl, 2023. "Using Landfill Sites and Marginal Lands for Socio-Economically Sustainable Biomass Production through Cultivation of Non-Food Energy Crops: An Analysis Focused on South Asia and Europe," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    4. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    5. Sergey Zhironkin, 2022. "Advances in Sustainable Development: Technological and Economic Overview," Energies, MDPI, vol. 15(17), pages 1-5, September.
    6. Eugenia A. Petropoulou & Vasiliki Petousi, 2024. "Social Capital, Trust, and Cultivation of Bioenergy Crops: Evidence from Germany and Greece," Agriculture, MDPI, vol. 14(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calliope Panoutsou & Efthymia Alexopoulou, 2020. "Costs and Profitability of Crops for Bioeconomy in the EU," Energies, MDPI, vol. 13(5), pages 1-27, March.
    2. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Attila Jámbor & Áron Török, 2019. "The Economics of Arundo donax —A Systematic Literature Review," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    4. Mantziaris, Stamatis & Iliopoulos, Constantine & Theodorakopoulou, Irini & Petropoulou, Eugenia, 2017. "Perennial energy crops vs. durum wheat in low input lands: Economic analysis of a Greek case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 789-800.
    5. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.
    6. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    7. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    8. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    9. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    11. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    12. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.
    13. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    14. Sultana, Arifa & Kumar, Amit, 2014. "Development of tortuosity factor for assessment of lignocellulosic biomass delivery cost to a biorefinery," Applied Energy, Elsevier, vol. 119(C), pages 288-295.
    15. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.
    16. Anas Zyadin & Karthikeyan Natarajan & Suresh Chauhan & Harminder Singh & Md. Kamrul Hassan & Ari Pappinen & Paavo Pelkonen, 2015. "Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant," Challenges, MDPI, vol. 6(1), pages 1-13, April.
    17. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    18. Spinelli, D. & Jez, S. & Pogni, R. & Basosi, R., 2013. "Environmental and life cycle analysis of a biodiesel production line from sunflower in the Province of Siena (Italy)," Energy Policy, Elsevier, vol. 59(C), pages 492-506.
    19. Alba Leduchowicz-Municio & Miguel Edgar Morales Udaeta & André Luiz Veiga Gimenes & Tuo Ji & Victor Baiochi Riboldi, 2022. "Socio-Environmental Evaluation of MV Commercial Time-Shift Application Based on Battery Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-21, July.
    20. Gorelick, David E. & Baskaran, Latha M. & Jager, Henriëtte I., 2019. "Visualizing feedstock siting in biomass production: Tradeoffs between economic and water quality objectives," Land Use Policy, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2741-:d:364879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.