IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2594-d360517.html
   My bibliography  Save this article

Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit

Author

Listed:
  • Gabriele Calì

    (Sotacarbo S.p.A., Grande Miniera di Serbariu, 09013 Carbonia, Italy)

  • Paolo Deiana

    (ENEA, Italian Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Roma, Italy)

  • Claudia Bassano

    (ENEA, Italian Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Roma, Italy)

  • Simone Meloni

    (Sotacarbo S.p.A., Grande Miniera di Serbariu, 09013 Carbonia, Italy)

  • Enrico Maggio

    (Sotacarbo S.p.A., Grande Miniera di Serbariu, 09013 Carbonia, Italy)

  • Michele Mascia

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza D’Armi, 09123 Cagliari, Italy)

  • Alberto Pettinau

    (Sotacarbo S.p.A., Grande Miniera di Serbariu, 09013 Carbonia, Italy)

Abstract

This paper presents the experimental development at demonstration scale of an integrated gasification system fed with wood chips. The unit is based on a fixed-bed, updraft and air-blown gasifier—with a nominal capacity of 5 MW th —equipped with a wet scrubber for syngas clean-up and an integrated chemical and physical wastewater management system. Gasification performance, syngas composition and temperature profile are presented for the optimal operating conditions and with reference to two kinds of biomass used as primary fuels, i.e., stone pine and eucalyptus from local forests (combined heat and power generation from this kind of fuel represents a good opportunity to exploit distributed generation systems that can be part of a new energy paradigm in the framework of the circular economy). The gasification unit is characterised by a high efficiency (about 79–80%) and an operation stability during each test. Particular attention has been paid to the optimisation of an integrated double stage wastewater management system—which includes an oil skimmer and an activated carbon adsorption filter—designed to minimise both liquid residues and water make-up. The possibility to recycle part of the separated oil and used activated carbon to the gasifier has been also evaluated.

Suggested Citation

  • Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2594-:d:360517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    3. Michał Krzyżaniak & Mariusz J. Stolarski & Łukasz Graban & Waldemar Lajszner & Tomasz Kuriata, 2020. "Camelina and Crambe Oil Crops for Bioeconomy—Straw Utilisation for Energy," Energies, MDPI, vol. 13(6), pages 1-8, March.
    4. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    5. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    6. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    7. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.
    8. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    10. Sang Yeop Lee & Se Won Park & Md Tanvir Alam & Yean Ouk Jeong & Yong-Chil Seo & Hang Seok Choi, 2020. "Studies on the Gasification Performance of Sludge Cake Pre-Treated by Hydrothermal Carbonization," Energies, MDPI, vol. 13(6), pages 1-15, March.
    11. Mateusz Szul & Tomasz Iluk & Aleksander Sobolewski, 2020. "High-Temperature, Dry Scrubbing of Syngas with Use of Mineral Sorbents and Ceramic Rigid Filters," Energies, MDPI, vol. 13(6), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishal Ahuja & Arvind Kumar Bhatt & Balasubramani Ravindran & Yung-Hun Yang & Shashi Kant Bhatia, 2023. "A Mini-Review on Syngas Fermentation to Bio-Alcohols: Current Status and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Ravi Kant Bhatia & Deepak Sakhuja & Shyam Mundhe & Abhishek Walia, 2020. "Renewable Energy Products through Bioremediation of Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Eliseu Monteiro & Sérgio Ferreira, 2022. "Biomass Waste for Energy Production," Energies, MDPI, vol. 15(16), pages 1-5, August.
    4. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Čespiva, J. & Skřínský, J. & Vereš, J. & Wnukowski, M. & Serenčíšová, J. & Ochodek, T., 2023. "Solid recovered fuel gasification in sliding bed reactor," Energy, Elsevier, vol. 278(C).
    6. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    7. Abdulrahman Abdeljaber & Rawan Zannerni & Wedad Masoud & Mohamed Abdallah & Lisandra Rocha-Meneses, 2022. "Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    2. ABM Abdul Malek & M Hasanuzzaman & Nasrudin A Rahim & Yusuf A Al–Turki, 2021. "Energy, economic, and environmental analysis of 10-MW biomass gasification based power generation in Malaysia," Energy & Environment, , vol. 32(2), pages 295-337, March.
    3. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Shen, Yafei & Wang, Junfeng & Ge, Xinlei & Chen, Mindong, 2016. "By-products recycling for syngas cleanup in biomass pyrolysis – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1246-1268.
    6. Porcu, Andrea & Xu, Yupeng & Mureddu, Mauro & Dessì, Federica & Shahnam, Mehrdad & Rogers, William A. & Sastri, Bhima S. & Pettinau, Alberto, 2021. "Experimental validation of a multiphase flow model of a lab-scale fluidized-bed gasification unit," Applied Energy, Elsevier, vol. 293(C).
    7. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    8. Kalina, Jacek, 2017. "Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant," Energy, Elsevier, vol. 141(C), pages 2499-2507.
    9. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    10. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    11. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    12. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    14. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    15. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    16. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    18. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    19. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Pio, D.T. & Tarelho, L.A.C. & Pinto, R.G. & Matos, M.A.A. & Frade, J.R. & Yaremchenko, A. & Mishra, G.S. & Pinto, P.C.R., 2018. "Low-cost catalysts for in-situ improvement of producer gas quality during direct gasification of biomass," Energy, Elsevier, vol. 165(PB), pages 442-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2594-:d:360517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.