IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1442-d334619.html
   My bibliography  Save this article

Studies on the Gasification Performance of Sludge Cake Pre-Treated by Hydrothermal Carbonization

Author

Listed:
  • Sang Yeop Lee

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Se Won Park

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
    Environment and Sustainable Resources Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea)

  • Md Tanvir Alam

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
    Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia)

  • Yean Ouk Jeong

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Yong-Chil Seo

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Hang Seok Choi

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

Abstract

Proper treatment and careful management of sewage sludge are essential because its disposal can lead to adverse environmental impacts such as public health hazards, as well as air, soil, and water pollution. Several efforts are being made currently not only to safely dispose of sewage sludge but also to utilize it as an energy source. Therefore, in this study, initiatives were taken to valorize sewage sludge cake by reducing the moisture content and increasing the calorific value by applying a hydrothermal treatment technique for efficient energy recovery. The sludge cake treated at 200 °C for 1 h was found to be the optimum condition for hydrothermal carbonization, as, in this condition, the caloric value of the treated sludge increased by 10% and the moisture content removed was 20 wt.%. To recover energy from the hydrothermally treated sludge, a gasification technology was applied at 900 °C. The results showed that the product gas from hydrothermally treated sludge cake had a higher lower heating value (0.98 MJ/Nm 3 ) and higher cold gas efficiency (5.8%). Furthermore, compared with raw sludge cake, less tar was generated during the gasification of hydrothermally treated sludge cake. The removal efficiency was 28.2%. Overall results depict that hydrothermally treated sewage sludge cake could be a good source of energy recovery via the gasification process.

Suggested Citation

  • Sang Yeop Lee & Se Won Park & Md Tanvir Alam & Yean Ouk Jeong & Yong-Chil Seo & Hang Seok Choi, 2020. "Studies on the Gasification Performance of Sludge Cake Pre-Treated by Hydrothermal Carbonization," Energies, MDPI, vol. 13(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1442-:d:334619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    2. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    3. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Chun, Young Nam & Kim, Seong Cheon & Yoshikawa, Kunio, 2011. "Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier," Applied Energy, Elsevier, vol. 88(4), pages 1105-1112, April.
    5. Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
    6. Ju-Hyoung Park & Min-Ho Jin & Young-Joo Lee & Gyu-Seob Song & Jong Won Choi & Dong-Wook Lee & Young-Chan Choi & Se-Joon Park & Kwang Ho Song & Joeng-Geun Kim, 2019. "Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects," Energies, MDPI, vol. 12(16), pages 1-15, August.
    7. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    8. Andrius Tamošiūnas & Dovilė Gimžauskaitė & Mindaugas Aikas & Rolandas Uscila & Marius Praspaliauskas & Justas Eimontas, 2019. "Gasification of Waste Cooking Oil to Syngas by Thermal Arc Plasma," Energies, MDPI, vol. 12(13), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    2. Alessandro Antonio Papa & Andrea Di Carlo & Enrico Bocci & Luca Taglieri & Luca Del Zotto & Alberto Gallifuoco, 2021. "Energy Analysis of an Integrated Plant: Fluidized Bed Steam Gasification of Hydrothermally Treated Biomass Coupled to Solid Oxide Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    2. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    3. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    4. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    5. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    6. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    7. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    8. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    9. Qi, Renzhi & Xu, Zhihua & Zhou, Yuwei & Zhang, Daofang & Sun, Zhenhua & Chen, Weifang & Xiong, Mengmeng, 2021. "Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: Upgrading the fuel quality and combustion characteristics," Energy, Elsevier, vol. 214(C).
    10. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    12. Liu, Yali & Zhai, Yunbo & Li, Shanhong & Liu, Xiangmin & Liu, Xiaoping & Wang, Bei & Qiu, Zhenzi & Li, Caiting, 2020. "Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge," Energy, Elsevier, vol. 203(C).
    13. Salaudeen, Shakirudeen A. & Acharya, Bishnu & Dutta, Animesh, 2021. "Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes," Renewable Energy, Elsevier, vol. 171(C), pages 582-591.
    14. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    15. Gallifuoco, Alberto & Taglieri, Luca & Papa, Alessandro Antonio, 2020. "Hydrothermal carbonization of waste biomass to fuel: A novel technique for analyzing experimental data," Renewable Energy, Elsevier, vol. 149(C), pages 1254-1260.
    16. Ioannis O. Vardiambasis & Theodoros N. Kapetanakis & Christos D. Nikolopoulos & Trinh Kieu Trang & Toshiki Tsubota & Ramazan Keyikoglu & Alireza Khataee & Dimitrios Kalderis, 2020. "Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values," Energies, MDPI, vol. 13(17), pages 1-20, September.
    17. Peng, Nana & Gai, Chao & Peng, Chao, 2020. "Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification," Energy, Elsevier, vol. 210(C).
    18. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Yan, Mi & Liu, Jianyong & Yoshikawa, Kunio & Jiang, Jiahao & Zhang, Yan & Zhu, Gaojun & Liu, Yu & Hantoko, Dwi, 2022. "Cascading disposal for food waste by integration of hydrothermal carbonization and supercritical water gasification," Renewable Energy, Elsevier, vol. 186(C), pages 914-926.
    20. Xue, Junjie & Yang, Zengling & Han, Lujia & Liu, Yuchen & Liu, Yao & Zhou, Chengcheng, 2015. "On-line measurement of proximates and lignocellulose components of corn stover using NIRS," Applied Energy, Elsevier, vol. 137(C), pages 18-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1442-:d:334619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.