IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220317631.html
   My bibliography  Save this article

Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification

Author

Listed:
  • Peng, Nana
  • Gai, Chao
  • Peng, Chao

Abstract

Steam gasification behavior and kinetics of hydrothermally treated low-lipid microalgae Nannochloropsis sp. were probed in this work. The roles of hydrothermal carbonization (HTC) parameters (HTC temperature, HTC reaction time) as well as gasification conditions (gasification temperature, S/B mass ratio) in modulating the properties of hydrothermal carbons (HCs) as well as gasification performance were elucidated. Experimental results indicated that the aromaticity of the HCs derived from Nannochloropsis sp. was promoted, whereas the polarity was lowered by the increased HTC temperature and reaction time. At optimum HTC conditions (HTC temperature of 180 °C, residence time of 12 h) and gasification conditions (gasification temperature of 900 °C, S/B mass ratio of 2), the total maximum energy recovery efficiency was as high as 1.59. Kinetic parameters for the major gaseous products during the steam gasification of raw microalgae and the two typical HCs (HC–180C-12 h and HC-220C-12 h) were further determined. Kinetic results verified that the gasification reactivity of HC-180C-12 h was greatly higher than other two feedstock, and H2 formation was greatly promoted compared to the other two gaseous products. Overall, combining hydrothermal pretreatment and steam gasification in one step is a promising technology that could greatly promote hydrogen-rich syngas production and energy recovery efficiency from low-lipid microalgae.

Suggested Citation

  • Peng, Nana & Gai, Chao & Peng, Chao, 2020. "Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317631
    DOI: 10.1016/j.energy.2020.118655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Nana & Liu, Zhengang & Liu, Tingting & Gai, Chao, 2016. "Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation," Applied Energy, Elsevier, vol. 184(C), pages 396-403.
    2. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O," Energy, Elsevier, vol. 167(C), pages 688-697.
    3. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
    6. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    7. Nipattummakul, Nimit & Ahmed, Islam & Kerdsuwan, Somrat & Gupta, Ashwani K., 2010. "High temperature steam gasification of wastewater sludge," Applied Energy, Elsevier, vol. 87(12), pages 3729-3734, December.
    8. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Yongsheng & Wang, Yingjie & Jiang, Cong & Wang, Xun & Hu, Zhiquan & Xiao, Bo & Liu, Shiming, 2022. "Simultaneous enhancement of the H2 yield and HCl removal efficiency from pyrolysis of infusion tube under novel mayenite-based mesoporous catalytic sorbents," Energy, Elsevier, vol. 244(PB).
    2. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    3. Xie, Xiaodi & Peng, Chao & Song, Xinyu & Peng, Nana & Gai, Chao, 2022. "Pyrolysis kinetics of the hydrothermal carbons derived from microwave-assisted hydrothermal carbonization of food waste digestate," Energy, Elsevier, vol. 245(C).
    4. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Krishnamoorthy, Amarnath & Rodriguez, Cristina & Durrant, Andy, 2023. "Optimisation of ultrasonication pretreatment on microalgae Chlorella Vulgaris & Nannochloropsis Oculata for lipid extraction in biodiesel production," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    2. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    3. Salaudeen, Shakirudeen A. & Acharya, Bishnu & Dutta, Animesh, 2021. "Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes," Renewable Energy, Elsevier, vol. 171(C), pages 582-591.
    4. Ioannis O. Vardiambasis & Theodoros N. Kapetanakis & Christos D. Nikolopoulos & Trinh Kieu Trang & Toshiki Tsubota & Ramazan Keyikoglu & Alireza Khataee & Dimitrios Kalderis, 2020. "Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values," Energies, MDPI, vol. 13(17), pages 1-20, September.
    5. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    6. Sang Yeop Lee & Se Won Park & Md Tanvir Alam & Yean Ouk Jeong & Yong-Chil Seo & Hang Seok Choi, 2020. "Studies on the Gasification Performance of Sludge Cake Pre-Treated by Hydrothermal Carbonization," Energies, MDPI, vol. 13(6), pages 1-15, March.
    7. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    8. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    9. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    10. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    11. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    12. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    13. Shan Gu & Maosheng Liu & Xiaoye Liang, 2024. "Analysis of Operational Problems and Improvement Measures for Biomass-Circulating Fluidized Bed Gasifiers," Energies, MDPI, vol. 17(2), pages 1-12, January.
    14. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    15. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    16. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    17. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    18. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    19. Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
    20. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.