IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1702-d228483.html
   My bibliography  Save this article

Experimental Observation of Natural Convection Heat Transfer Performance of a Rectangular Thermosyphon

Author

Listed:
  • C. S. Huang

    (Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan)

  • Chia-Wang Yu

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • R. H. Chen

    (Department of Mechanical and Energy Engineering, National Chiayi University, Chiayi 600, Taiwan)

  • Chun-Ta Tzeng

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • Chi-Ming Lai

    (Department of Civil Engineering, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

This study experimentally investigates the natural convection heat transfer performance of a rectangular thermosyphon with an aspect ratio of 3.5. The experimental model is divided into a loop body, a heating section, a cooling section, and two adiabatic sections. The heating section and the cooling section are located in the vertical legs of the rectangular loop. The length of the vertical heating section and the length of the upper and lower horizontal insulation sections are 700 mm and 200 mm, respectively, and the inner diameter of the loop is 11 mm. The relevant parameters and their ranges are as follows: the input thermal power is 30–60 W (with a heat flux in the range of 60–3800 W/m 2 ); the temperature in the cooling section is 30, 40, or 50 °C; and the potential difference between the hot and cold sections is 5, 11, or 18 for the cooling section lengths of 60, 45, and 30 cm, respectively. The results indicate that the value of the dimensionless heat transfer coefficient, the Nusselt number, is generally between 5 and 10. The heating power is the main factor affecting the natural convection intensity of the thermosyphon.

Suggested Citation

  • C. S. Huang & Chia-Wang Yu & R. H. Chen & Chun-Ta Tzeng & Chi-Ming Lai, 2019. "Experimental Observation of Natural Convection Heat Transfer Performance of a Rectangular Thermosyphon," Energies, MDPI, vol. 12(9), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1702-:d:228483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sureshkumar, R. & Mohideen, S. Tharves & Nethaji, N., 2013. "Heat transfer characteristics of nanofluids in heat pipes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 397-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Kraszewska & Janusz Donizak, 2021. "An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field," Energies, MDPI, vol. 14(23), pages 1-23, November.
    2. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    3. Chia-Wang Yu & C. S. Huang & C. T. Tzeng & Chi-Ming Lai, 2019. "Effects of the Aspect Ratio of a Rectangular Thermosyphon on Its Thermal Performance," Energies, MDPI, vol. 12(20), pages 1-11, October.
    4. Changhwan Lim & Jonghwi Choi & Hyungdae Kim, 2021. "Experimental Investigation of the Heat Transfer Characteristics and Operation Limits of a Fork-Type Heat Pipe for Passive Cooling of a Spent Fuel Pool," Energies, MDPI, vol. 14(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    2. Ziapour, Behrooz M. & Shokrnia, Mehdi & Naseri, Mohammad, 2016. "Comparatively study between single-phase and two-phase modes of energy extraction in a salinity-gradient solar pond power plant," Energy, Elsevier, vol. 111(C), pages 126-136.
    3. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    4. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    5. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    7. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    8. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    9. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    10. Sohel Murshed, S.M. & Nieto de Castro, C.A., 2017. "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 821-833.
    11. Ozsoy, Ahmet & Corumlu, Vahit, 2018. "Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications," Renewable Energy, Elsevier, vol. 122(C), pages 26-34.
    12. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    13. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    14. Sarafraz, M.M. & Tlili, I. & Tian, Zhe & Bakouri, Mohsen & Safaei, Mohammad Reza, 2019. "Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1702-:d:228483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.