IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p4014-d279080.html
   My bibliography  Save this article

Effects of the Aspect Ratio of a Rectangular Thermosyphon on Its Thermal Performance

Author

Listed:
  • Chia-Wang Yu

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • C. S. Huang

    (Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan)

  • C. T. Tzeng

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • Chi-Ming Lai

    (Department of Civil Engineering, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

The natural convection behaviors of rectangular thermosyphons with different aspect ratios were experimentally analyzed in this study. The experimental model consisted of a loop body, a heating section, a cooling section, and adiabatic sections. The heating and cooling sections were located in the vertical portions of the rectangular loop. The length of the vertical cooling section and the lengths of the upper and lower adiabatic sections were fixed at 300 mm and 200 mm, respectively. The inner diameter of the loop was fixed at 11 mm, and the cooling end temperature was 30 °C. The relevant parameters and their ranges were as follows: The aspect ratios were 6, 4.5, and 3.5 (with potential differences of 41, 27, and 18, respectively, between the cold and hot ends), and the input thermal power ranged from 30 to 60 W (with a heat flux of 600 to 3800 W/m 2 ). The results show that it is feasible to obtain solar heat gain by installing a rectangular thermosyphon inside the metal curtain wall and that increasing the height of the opaque part of the metal curtain wall can increase the aspect ratio of the rectangular thermosyphon installed inside the wall and thus improve the heat transfer efficiency.

Suggested Citation

  • Chia-Wang Yu & C. S. Huang & C. T. Tzeng & Chi-Ming Lai, 2019. "Effects of the Aspect Ratio of a Rectangular Thermosyphon on Its Thermal Performance," Energies, MDPI, vol. 12(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:4014-:d:279080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/4014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/4014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. S. Huang & Chia-Wang Yu & R. H. Chen & Chun-Ta Tzeng & Chi-Ming Lai, 2019. "Experimental Observation of Natural Convection Heat Transfer Performance of a Rectangular Thermosyphon," Energies, MDPI, vol. 12(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    2. Anna Kraszewska & Janusz Donizak, 2021. "An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field," Energies, MDPI, vol. 14(23), pages 1-23, November.
    3. Changhwan Lim & Jonghwi Choi & Hyungdae Kim, 2021. "Experimental Investigation of the Heat Transfer Characteristics and Operation Limits of a Fork-Type Heat Pipe for Passive Cooling of a Spent Fuel Pool," Energies, MDPI, vol. 14(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:4014-:d:279080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.