IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p428-d201811.html
   My bibliography  Save this article

Technology is not a Barrier: A Survey of Energy System Technologies Required for Innovative Electricity Business Models Driving the Low Carbon Energy Revolution

Author

Listed:
  • Christoph Mazur

    (Chemical Engineering Department, Imperial College London, London SW7 2AZ, UK
    Grantham Institute—Environment and Climate Change, Imperial College London, London SW7 2AZ, UK)

  • Stephen Hall

    (School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK)

  • Jeffrey Hardy

    (Grantham Institute—Environment and Climate Change, Imperial College London, London SW7 2AZ, UK)

  • Mark Workman

    (Energy Systems Catapult, Birmingham B4 6BS, UK)

Abstract

Energy system decarbonisation and changing consumer behaviours will create and destroy new markets in the electric power sector. This means that the energy industry will have to adapt their business models in order to capture these pools of value. Recent work explores how changes to the utility business model that include digital, decentralised or service-based offers could both disrupt the market and accelerate low carbon transitions. However, it is unclear whether these business models are technologically feasible. To answer this question, we undertook an expert panel study to determine the readiness levels of key enabling technologies. The result is an analysis of what technologies may hinder electricity business model innovation and where more research or development is necessary. The study shows that none of the business models that are compatible with a low carbon power sector are facing technology barriers that cannot be overcome, but there is still work to be done in the domain of system integration. We conclude that, especially in the field of energy system coordination and operation, there is a need for comprehensive demonstration trials which can iteratively combine and test information and communications technology (ICT) solutions. This form of innovation support would require a new approach to energy system trials.

Suggested Citation

  • Christoph Mazur & Stephen Hall & Jeffrey Hardy & Mark Workman, 2019. "Technology is not a Barrier: A Survey of Energy System Technologies Required for Innovative Electricity Business Models Driving the Low Carbon Energy Revolution," Energies, MDPI, vol. 12(3), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:428-:d:201811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    3. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    4. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    5. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    6. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    7. Zeng, Michael A., 2018. "Foresight by online communities – The case of renewable energies," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 27-42.
    8. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    9. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    10. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    11. Bolton, Ronan & Hannon, Matthew, 2016. "Governing sustainability transitions through business model innovation: Towards a systems understanding," Research Policy, Elsevier, vol. 45(9), pages 1731-1742.
    12. MacKie-Mason, Jeffrey K. & Wellman, Michael P., 2006. "Automated Markets and Trading Agents," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 28, pages 1381-1431, Elsevier.
    13. Wegner, Marie-Sophie & Hall, Stephen & Hardy, Jeffrey & Workman, Mark, 2017. "Valuing energy futures; a comparative analysis of value pools across UK energy system scenarios," Applied Energy, Elsevier, vol. 206(C), pages 815-828.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watson, Nicole E. & Huebner, Gesche M. & Fell, Michael J. & Shipworth, David, 2020. "Two energy suppliers are better than one: Survey experiments on consumer engagement with local energy in GB," Energy Policy, Elsevier, vol. 147(C).
    2. Danlu Xu & Zhoubin Liu & Rui Shan & Haixiao Weng & Haoyu Zhang, 2023. "How a Grid Company Could Enter the Hydrogen Industry through a New Business Model: A Case Study in China," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    3. Böhringer, Christoph & Cantner, Uwe & Costard, Jano & Kramkowski, Lea-Victoria & Gatzen, Christoph & Pietsch, Sven, 2020. "Innovation for the German energy transition - Insights from an expert survey," Energy Policy, Elsevier, vol. 144(C).
    4. Aleksandra Kekkonen & Renee Pesor & Marge Täks, 2023. "Stepping towards the Green Transition: Challenges and Opportunities of Estonian Companies," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    5. María-José Prados & Marta Pallarès-Blanch & Ramón García-Marín & Carolina del Valle, 2021. "Renewable Energy Plants and Business Models: A New Rural Development Perspective," Energies, MDPI, vol. 14(17), pages 1-19, September.
    6. Watson, Nicole Elizabeth & Huebner, Gesche & Fell, Michael James & Shipworth, David, 2020. "Two energy suppliers are better than one: survey experiments on consumer engagement with local energy in GB," SocArXiv e9nyu, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, Donal & Hall, Stephen & Davis, Mark E., 2019. "Prosumers in the post subsidy era: an exploration of new prosumer business models in the UK," Energy Policy, Elsevier, vol. 135(C).
    2. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Paiho, Satu & Saastamoinen, Heidi, 2018. "How to develop district heating in Finland?," Energy Policy, Elsevier, vol. 122(C), pages 668-676.
    4. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    5. Pereira, Guillermo Ivan & Niesten, Eva & Pinkse, Jonatan, 2022. "Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    6. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.
    7. Maria Rosa De Giacomo & Raimund Bleischwitz, 2020. "Business models for environmental sustainability: Contemporary shortcomings and some perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3352-3369, December.
    8. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    9. Grzegorz Zimon, 2020. "Financial Liquidity Management Strategies in Polish Energy Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 365-368.
    10. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    11. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    13. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.
    14. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    15. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.
    16. Moritz Ehrtmann & Lars Holstenkamp & Timon Becker, 2021. "Regional Electricity Models for Community Energy in Germany: The Role of Governance Structures," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    17. Löhr, Meike & Mattes, Jannika, 2022. "Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    18. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    19. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    20. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:428-:d:201811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.