IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p269-d198214.html
   My bibliography  Save this article

EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions

Author

Listed:
  • Alexandre Lucas

    (European Commission, Joint Research Centre (JRC), Directorate C—Energy, Transport and Climate, Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

  • Ricardo Barranco

    (European Commission, Joint Research Centre (JRC), Directorate B—Growth and Innovation, Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

  • Nazir Refa

    (ElaadNL, Utrechtseweg 310 (bld. 42B), 6812 AR Arnhem (GL), The Netherlands)

Abstract

The adoption of electric vehicles (EV) has to be complemented with the right charging infrastructure roll-out. This infrastructure is already in place in many cities throughout the main markets of China, EU and USA. Public policies are both taken at regional and/or at a city level targeting both EV adoption, but also charging infrastructure management. A growing trend is the increasing idle time over the years (time an EV is connected without charging), which directly impacts on the sizing of the infrastructure, hence its cost or availability. Such a phenomenon can be regarded as an opportunity but may very well undermine the same initiatives being taken to promote adoption; in any case it must be measured, studied, and managed. The time an EV takes to charge depends on its initial/final state of charge (SOC) and the power being supplied to it. The problem however is to estimate the time the EV remains parked after charging (idle time), as it depends on many factors which simple statistical analysis cannot tackle. In this study we apply supervised machine learning to a dataset from the Netherlands and analyze three regression algorithms, Random Forest, Gradient Boosting and XGBoost, identifying the most accurate one and main influencing parameters. The model can provide useful information for EV users, policy maker and network owners to better manage the network, targeting specific variables. The best performing model is XGBoost with an R 2 score of 60.32% and mean absolute error of 1.11. The parameters influencing the model the most are: The time of day in which the charging sessions start and the total energy supplied with 22.35%, 15.57% contribution respectively. Partial dependencies of variables and model performances are presented and implications on public policies discussed.

Suggested Citation

  • Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:269-:d:198214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Lucas & Giuseppe Prettico & Marco Giacomo Flammini & Evangelos Kotsakis & Gianluca Fulli & Marcelo Masera, 2018. "Indicator-Based Methodology for Assessing EV Charging Infrastructure Using Exploratory Data Analysis," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kantapich Preedakorn & David Butler & Jörn Mehnen, 2023. "Challenges for the Adoption of Electric Vehicles in Thailand: Potential Impacts, Barriers, and Public Policy Recommendations," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    2. Athanasios Paraskevas & Dimitrios Aletras & Antonios Chrysopoulos & Antonios Marinopoulos & Dimitrios I. Doukas, 2022. "Optimal Management for EV Charging Stations: A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning," Energies, MDPI, vol. 15(7), pages 1-24, March.
    3. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    4. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    5. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    6. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    7. Mengting Yao & Yun Zhu & Junjie Li & Hua Wei & Penghui He, 2019. "Research on Predicting Line Loss Rate in Low Voltage Distribution Network Based on Gradient Boosting Decision Tree," Energies, MDPI, vol. 12(13), pages 1-14, June.
    8. George Konstantinidis & Emmanuel Karapidakis & Alexandros Paspatis, 2022. "Mitigating the Impact of an Official PEV Charger Deployment Plan on an Urban Grid," Energies, MDPI, vol. 15(4), pages 1-18, February.
    9. Chen, Jiahui & Wang, Fang & He, Xiaoyi & Liang, Xinyu & Huang, Junling & Zhang, Shaojun & Wu, Ye, 2022. "Emission mitigation potential from coordinated charging schemes for future private electric vehicles," Applied Energy, Elsevier, vol. 308(C).
    10. Hongyuan Yuan & Jingan Liu & Yu Zhou & Hailong Pei, 2023. "State of Charge Estimation of Lithium Battery Based on Integrated Kalman Filter Framework and Machine Learning Algorithm," Energies, MDPI, vol. 16(5), pages 1-16, February.
    11. Adrian Ostermann & Yann Fabel & Kim Ouan & Hyein Koo, 2022. "Forecasting Charging Point Occupancy Using Supervised Learning Algorithms," Energies, MDPI, vol. 15(9), pages 1-23, May.
    12. Afentoulis, Konstantinos D. & Bampos, Zafeirios N. & Vagropoulos, Stylianos I. & Keranidis, Stratos D. & Biskas, Pantelis N., 2022. "Smart charging business model framework for electric vehicle aggregators," Applied Energy, Elsevier, vol. 328(C).
    13. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    14. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.
    2. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    3. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    4. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    5. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    6. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    7. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    8. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    9. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    10. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    11. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    12. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    13. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    14. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    15. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    17. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    18. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    19. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    20. Matthias Bogaert & Michel Ballings & Dirk Van den Poel, 2018. "Evaluating the importance of different communication types in romantic tie prediction on social media," Annals of Operations Research, Springer, vol. 263(1), pages 501-527, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:269-:d:198214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.