IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4658-d295463.html
   My bibliography  Save this article

Optimal Operation of Critical Peak Pricing for an Energy Retailer Considering Balancing Costs

Author

Listed:
  • Hye Yoon Song

    (Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Gyu Sub Lee

    (Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Yong Tae Yoon

    (Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

Abstract

Recently, there have been frequent fluctuations in the wholesale prices of electricity following the increased penetration of renewable energy sources. Therefore, retailers face price risks caused by differences between wholesale prices and retail rates. As a hedging against price risk, retailers can utilize critical peak pricing (CPP) in a price-based program. This study proposes a novel multi-stage stochastic programming (MSSP) model for a retailer with self-generation photovoltaic facility to optimize both its bidding strategy and the CPP operation, in the face of several uncertainties. Using MSSP, decisions can be determined sequentially with realization of the uncertainties over time. Furthermore, to ensure a global optimum, a mixed integer non-linear programming is transformed into mixed integer linear programming through three linearization steps. In a numerical simulation, the effectiveness of the proposed MSSP model is compared with that of a mean-value deterministic model based on a rolling horizon method. We also investigate the optimal strategy of a retailer by changing various input parameters and perform a sensitivity analysis to assess the impacts of different uncertain parameters on the retailer’s profit. Finally, the effect of the energy storage system on the proposed optimization problem is investigated.

Suggested Citation

  • Hye Yoon Song & Gyu Sub Lee & Yong Tae Yoon, 2019. "Optimal Operation of Critical Peak Pricing for an Energy Retailer Considering Balancing Costs," Energies, MDPI, vol. 12(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4658-:d:295463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    2. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    3. Herter, Karen & McAuliffe, Patrick & Rosenfeld, Arthur, 2007. "An exploratory analysis of California residential customer response to critical peak pricing of electricity," Energy, Elsevier, vol. 32(1), pages 25-34.
    4. Paul L Joskow, 2019. "Challenges for wholesale electricity markets with intermittent renewable generation at scale: the US experience," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 35(2), pages 291-331.
    5. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    6. Thanh Tam Ho & Sarana Shinkuma & Koji Shimada, 2018. "The Effects of Dynamic Pricing of Electric Power on Consumer Behavior: A Propensity Score Analysis for Empirical Study on Nushima Island, Japan," Energies, MDPI, vol. 11(8), pages 1-22, August.
    7. Steve A. Fenrick, Lullit Getachew, Chris Ivanov, and Jeff Smith, 2014. "Demand Impact of a Critical Peak Pricing Program: Opt-in and Opt-out Options, Green Attitudes and Other Customer Characteristics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    8. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    9. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    10. Katrina Jessoe & David Rapson, 2015. "Commercial and Industrial Demand Response Under Mandatory Time-of-Use Electricity Pricing," Journal of Industrial Economics, Wiley Blackwell, vol. 63(3), pages 397-421, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    3. Fumitoshi Mizutani & Takuro Tanaka & Eri Nakamura, 2015. "The Effect of Demand Response on Electricity Consumption in Japan," Discussion Papers 2015-02, Kobe University, Graduate School of Business Administration.
    4. Makena Coffman & Paul Bernstein & Derek Stenclik & Sherilyn Wee & Aida Arik, 2018. "Integrating Renewable Energy with Time Varying Pricing," Working Papers 2018-6, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Takanori Ida & Wenjie Wang, 2014. "A Field Experiment on Dynamic Electricity Pricing in Los Alamos:Opt-in Versus Opt-out," Discussion papers e-14-010, Graduate School of Economics Project Center, Kyoto University.
    6. Laurie Buys & Desley Vine & Gerard Ledwich & John Bell & Kerrie Mengersen & Peter Morris & Jim Lewis, 2015. "A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    7. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    8. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    9. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    10. Eri Nakamura & Fumitoshi Mizutani, 2019. "Necessary demand and extra demand of public utility product: identification using the stochastic frontier model," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 45-64, March.
    11. Holladay, J. Scott & Price, Michael K. & Wanamaker, Marianne, 2015. "The perverse impact of calling for energy conservation," Journal of Economic Behavior & Organization, Elsevier, vol. 110(C), pages 1-18.
    12. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    14. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    15. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    16. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    17. Turner, W.J.N. & Walker, I.S. & Roux, J., 2015. "Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass," Energy, Elsevier, vol. 82(C), pages 1057-1067.
    18. Bae, Mungyu & Kim, Hwantae & Kim, Eugene & Chung, Albert Yongjoon & Kim, Hwangnam & Roh, Jae Hyung, 2014. "Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system," Applied Energy, Elsevier, vol. 133(C), pages 252-273.
    19. Makena Coffman & Paul Bernstein & Sherilyn Wee & Aida Arik, 2016. "Estimating the Opportunity for Load-Shifting in Hawaii: An Analysis of Proposed Residential Time-of-Use Rates," Working Papers 2016-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    20. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4658-:d:295463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.