IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4624-d294613.html
   My bibliography  Save this article

Analysis of Archimedes Spiral Wind Turbine Performance by Simulation and Field Test

Author

Listed:
  • Hyeonmu Jang

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Dongmyeong Kim

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Yechan Hwang

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Insu Paek

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Seungjoo Kim

    (Korea Testing Certification, 22, Heungan-dearo 27, Gunpo-si 15809, Korea)

  • Joonho Baek

    (Department of Engineering Research, Eastern Star Cooperation Real Time Services (ESCO RTS), Doosanventuredigm, B112, Pyeongchon-Dong, 126-1, Dongan-Gu, Anyang, Gyeonggi-Do 431-070, Korea)

Abstract

In this study, the performance of an Archimedes spiral wind turbine is analyzed by simulation and validated by a field test. It is characterized as a horizontal-axis drag-type wind turbine. This type of wind turbine cannot be analyzed by the well-known Blade Element Momentum(BEM) theory or Double Stream Tube Method(DSTM) commonly used to analyze the performance of lift-type wind turbines. Therefore, the computational fluid dynamics (CFD) method was applied. From the simulation, the power coefficient, known as the mechanical efficiency of the rotor, the tip speed ratio was obtained. The maximum power coefficient, and the corresponding tip speed ratio were found to be 0.293 and 2.19, respectively. In addition, the electrical efficiency with respect to the rotational speed of the generator was obtained through generator–controller test. The obtained mechanical and electrical efficiencies were used to predict the power curve of the wind turbine. Finally, the predicted performance of the wind turbine, including the electrical losses, was validated by the field test. The maximum error between the prediction and the measured power was found to be less than 7.80%.

Suggested Citation

  • Hyeonmu Jang & Dongmyeong Kim & Yechan Hwang & Insu Paek & Seungjoo Kim & Joonho Baek, 2019. "Analysis of Archimedes Spiral Wind Turbine Performance by Simulation and Field Test," Energies, MDPI, vol. 12(24), pages 1-11, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4624-:d:294613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeonmu Jang & Insu Paek & Seungjoo Kim & Deockjin Jeong, 2019. "Performance Prediction and Validation of a Small-Capacity Twisted Savonius Wind Turbine," Energies, MDPI, vol. 12(9), pages 1-12, May.
    2. Kyung Chun Kim & Ho Seong Ji & Yoon Kee Kim & Qian Lu & Joon Ho Baek & Rinus Mieremet, 2014. "Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade," Energies, MDPI, vol. 7(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    2. Refaie, Abdelaziz G. & Abdel Hameed, H.S. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2021. "Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator," Energy, Elsevier, vol. 231(C).
    3. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Archimedes Spiral Wind Turbine performance study using different aerofoiled blade profiles: Experimental and numerical analyses," Energy, Elsevier, vol. 262(PB).
    4. Luke Sakamoto & Tomohiro Fukui & Koji Morinishi, 2022. "Blade Dimension Optimization and Performance Analysis of the 2-D Ugrinsky Wind Turbine," Energies, MDPI, vol. 15(7), pages 1-14, March.
    5. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    6. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations," Energy, Elsevier, vol. 250(C).
    7. Donggeun Jeong & Taesu Jeon & Insu Paek & Deokjin Lim, 2023. "Development and Validation of Control Algorithm for Variable Speed Fixed Pitch Small Wind Turbine," Energies, MDPI, vol. 16(4), pages 1-18, February.
    8. Refaie, Abdelaziz G. & Hameed, H.S. Abdel & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines," Energy, Elsevier, vol. 239(PC).
    9. Nawar, Mohamed A.A. & Hameed, H.S. Abdel & Ramadan, A. & Attai, Youssef A. & Mohamed, M.H., 2021. "Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance," Energy, Elsevier, vol. 223(C).
    10. Aitor Arzuaga & Asier Estivariz & Oihan Fernández & Kristian Gubía & Ander Plaza & Gonzalo Abad & David Cabezuelo Romero, 2023. "Low-Cost Maximum Power Point Tracking Strategy and Protection Circuit Applied to an Ayanz Wind Turbine with Screw Blades," Energies, MDPI, vol. 16(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refaie, Abdelaziz G. & Abdel Hameed, H.S. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2021. "Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator," Energy, Elsevier, vol. 231(C).
    2. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    3. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    4. Victor Mendoza & Eirini Katsidoniotaki & Hans Bernhoff, 2020. "Numerical Study of a Novel Concept for Manufacturing Savonius Turbines with Twisted Blades," Energies, MDPI, vol. 13(8), pages 1-16, April.
    5. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations," Energy, Elsevier, vol. 250(C).
    6. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    7. Zhongqiu Mu & Guoqiang Tong & Zhenjun Xiao & Qingyue Deng & Fang Feng & Yan Li & Garrel Van Arne, 2022. "Study on Aerodynamic Characteristics of a Savonius Wind Turbine with a Modified Blade," Energies, MDPI, vol. 15(18), pages 1-13, September.
    8. Dowon Han & Young Gun Heo & Nak Joon Choi & Sang Hyun Nam & Kyoung Ho Choi & Kyung Chun Kim, 2018. "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio," Energies, MDPI, vol. 11(6), pages 1-17, June.
    9. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Archimedes Spiral Wind Turbine performance study using different aerofoiled blade profiles: Experimental and numerical analyses," Energy, Elsevier, vol. 262(PB).
    10. Refaie, Abdelaziz G. & Hameed, H.S. Abdel & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines," Energy, Elsevier, vol. 239(PC).
    11. Aitor Arzuaga & Asier Estivariz & Oihan Fernández & Kristian Gubía & Ander Plaza & Gonzalo Abad & David Cabezuelo Romero, 2023. "Low-Cost Maximum Power Point Tracking Strategy and Protection Circuit Applied to an Ayanz Wind Turbine with Screw Blades," Energies, MDPI, vol. 16(17), pages 1-24, August.
    12. Nawar, Mohamed A.A. & Hameed, H.S. Abdel & Ramadan, A. & Attai, Youssef A. & Mohamed, M.H., 2021. "Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance," Energy, Elsevier, vol. 223(C).
    13. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    14. Donggeun Jeong & Taesu Jeon & Insu Paek & Deokjin Lim, 2023. "Development and Validation of Control Algorithm for Variable Speed Fixed Pitch Small Wind Turbine," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4624-:d:294613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.