IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4368-d287646.html
   My bibliography  Save this article

Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion

Author

Listed:
  • Muthita Tepsour

    (Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Meung, Pattani 94000, Thailand
    Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand)

  • Nikannapas Usmanbaha

    (Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
    Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand)

  • Thiwa Rattanaya

    (Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
    Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand)

  • Rattana Jariyaboon

    (Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Meung, Pattani 94000, Thailand
    Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand)

  • Sompong O-Thong

    (Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110, Thailand)

  • Poonsuk Prasertsan

    (Research and Development Office, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand)

  • Prawit Kongjan

    (Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Meung, Pattani 94000, Thailand
    Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand)

Abstract

Oil palm empty fruit bunches (EFB) and palm oil decanter cake (DC) were used to investigate biogas production by using solid-state anaerobic co-digestion (SS-AcoD) with 15% total solid (TS) content. Solid state anaerobic digestion (SS-AD) using substrate to inoculum (S:I) ratio of 3:1, methane yields of 353.0 mL-CH 4 /g-VS and 101.5 mL-CH 4 /g-VS were respectively achieved from mono-digestion of EFB without oil palm ash (OPA) addition and of DC with 10% OPA addition under mesophilic conditions 35 °C. By adding 5% OPA to SS-AD using 3:1 S:I ratio under thermophilic conditions (55 °C), mono-digestion of EFB and DC provided methane yields of 365.0 and 160.3 mL-CH 4 /g-VS, respectively. Furthermore, SS-AcoD of EFB:DC at 1:1 mixing ratio (volatile solid, VS basis), corresponding to carbon to nitrogen (C:N) ratio of 32, gathering with S:I ratio of 3:1 and 5% ash addition, synergistic effect is observed together with similar methane yields of 414.4 and 399.3 mL-CH 4 /g-VS, achieved under 35 °C and 55 °C, respectively. According to first order kinetic analysis under synergistic condition, methane production rate from thermophilic operation is 5 times higher than that from mesophilic operation. Therefore, SS-AcoD could be potentially beneficial to generate biogas from EFB and DC.

Suggested Citation

  • Muthita Tepsour & Nikannapas Usmanbaha & Thiwa Rattanaya & Rattana Jariyaboon & Sompong O-Thong & Poonsuk Prasertsan & Prawit Kongjan, 2019. "Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion," Energies, MDPI, vol. 12(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4368-:d:287646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    2. O. Chavalparit & W.H. Rulkens & A.P.J. Mol & S. Khaodhair, 2006. "Options For Environmental Sustainability Of The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(2), pages 271-287, May.
    3. Aditi David & Tanvi Govil & Abhilash Kumar Tripathi & Julie McGeary & Kylie Farrar & Rajesh Kumar Sani, 2018. "Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes," Energies, MDPI, vol. 11(8), pages 1-13, August.
    4. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    5. Suriyan Boonpiyo & Sureewan Sittijunda & Alissara Reungsang, 2018. "Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production," Energies, MDPI, vol. 11(11), pages 1-13, November.
    6. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    7. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    2. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    5. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    6. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    8. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    9. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    11. Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
    12. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    14. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    15. Reinauer, Tobias & Hansen, Ulrich Elmer, 2021. "Determinants of adoption in open-source hardware: A review of small wind turbines," Technovation, Elsevier, vol. 106(C).
    16. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    18. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    19. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    20. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4368-:d:287646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.