IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1436-1446.html
   My bibliography  Save this article

Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkaline supplementation

Author

Listed:
  • de Castro, Thiago Morais
  • Arantes, Eudes José
  • de Mendonça Costa, Mônica Sarolli Silva
  • Gotardo, Jackeline Tatiane
  • Passig, Fernando Hermes
  • de Carvalho, Karina Querne
  • Gomes, Simone Damasceno

Abstract

Anaerobic co-digestion from industrial waste landfill (IWL) leachate and glycerin was evaluated in a continuous anaerobic bioreactor with fixed-structured bed (ABFSB) under mesophilic conditions (30 ± 1 °C). The ABFSB reactor had a useful volume of 4.77 L. The support medium consisted of polyurethane (PU) foam arranged in an orderly manner. The substrate used corresponded to a mixture of 95% IWL leachate and 5% glycerin (v/v) and the inoculum consisted of flocculent anaerobic sludge. The ABFSB reactor was operated in two phases – the 1st phase (between the 49th and the 439th days of operation): started after the inoculum adaptation and the effect of the increase in the organic loading rate (OLR) was evaluated (2; 3.5; 7.1 and 11.6 gCOD L−1 d−1); the 2nd phase (between the 440th and 471st days of operation): the effect of the reduction in alkalinity supplementation via sodium bicarbonate (NaHCO3) was evaluated (0.56; 0.42; 0.28; 0.14 gNaHCO3 gCODinfluent−1 and non-supplementation). The OLR of 7.1 gCOD L−1 d−1 was the condition that presented the best results in the 1st phase for the parameters: maximum methane flow rate (MFR) (7.61 LNCH4 d−1), methane yield (MY) (0.30 LNCH4 gCODremoved−1), volumetric methane production rate (VMPR) (2.79 LNCH4 L−1 d−1), COD removal efficiencies (ERTCOD) and soluble COD (ERSCOD) higher than 90%. In the 2nd phase, the reactor was operated with an OLR of 7.1 gCOD L−1 d−1 and a hydraulic retention time (HRT) of 35.22 h and CODinfluent of 10.68 g L−1. The minimum alkalinity supplementation required was 0.28 gNaHCO3gCODinfluent−1, a condition in which the reactor showed stability and satisfactory performance for the parameters: MFR (9.48 LNCH4 d−1), MY (0.33 LNCH4 gCODremoved−1) and VMPR (3.18 LNCH4 L−1 d−1). It was concluded that the ABFSB reactor proved to be stable in the IWL leachate co-digestion and glycerin, when the alkalinity supplementation, effectively necessary, was met.

Suggested Citation

  • de Castro, Thiago Morais & Arantes, Eudes José & de Mendonça Costa, Mônica Sarolli Silva & Gotardo, Jackeline Tatiane & Passig, Fernando Hermes & de Carvalho, Karina Querne & Gomes, Simone Damasceno, 2021. "Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkal," Renewable Energy, Elsevier, vol. 164(C), pages 1436-1446.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1436-1446
    DOI: 10.1016/j.renene.2020.10.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    2. Luo, Jinghuan & Qian, Guangren & Liu, Jianyong & Xu, Zhi Ping, 2015. "Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 21-28.
    3. Fuess, Lucas Tadeu & Kiyuna, Luma Sayuri Mazine & Ferraz, Antônio Djalma Nunes & Persinoti, Gabriela Felix & Squina, Fabio Marcio & Garcia, Marcelo Loureiro & Zaiat, Marcelo, 2017. "Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse," Applied Energy, Elsevier, vol. 189(C), pages 480-491.
    4. Djalma Nunes Ferraz Júnior, Antônio & Koyama, Mirian H. & de Araújo Júnior, Moacir M. & Zaiat, Marcelo, 2016. "Thermophilic anaerobic digestion of raw sugarcane vinasse," Renewable Energy, Elsevier, vol. 89(C), pages 245-252.
    5. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    6. Meneses-Reyes, José Carlos & Hernández-Eugenio, Guadalupe & Huber, David H. & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2018. "Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter," Renewable Energy, Elsevier, vol. 128(PA), pages 223-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barcelos, Sheyla Thays Vieira & Ferreira, Igor Felipe Lima & Costa, Reginaldo B. & Magalhães Filho, Fernando Jorge Corrêa & Ribeiro, Alisson André & Cereda, Marney Pascoli, 2022. "Startup of UASB reactor with limestone fixed bed operating in the thermophilic range using vinasse as substrate," Renewable Energy, Elsevier, vol. 196(C), pages 610-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Takeda, Paula Yumi & Oliveira, Cristiane Arruda & Dias, Maria Eduarda Simões & Paula, Carolina Tavares & Borges, André do Vale & Damianovic, Márcia Helena Rissato Zamariolli, 2022. "Enhancing the energetic potential of sugarcane biorefinery exchanging vinasse and glycerol in sugarcane off-season in an anaerobic reactor," Renewable Energy, Elsevier, vol. 195(C), pages 1218-1229.
    3. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
    5. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.
    8. Purwanta, & Bayu, Ardian Indra & Mellyanawaty, Melly & Budiman, Arief & Budhijanto, Wiratni, 2022. "Techno-economic analysis of reactor types and biogas utilization schemes in thermophilic anaerobic digestion of sugarcane vinasse," Renewable Energy, Elsevier, vol. 201(P1), pages 864-875.
    9. Vilela, R.S. & Fuess, L.T. & Saia, F.T. & Silveira, C.R.M. & Oliveira, C.A. & Andrade, P.A. & Langenhoff, A. & van der Zaan, B. & Cop, F. & Gregoracci, G.B. & Damianovic, M.H.R.Z., 2021. "Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    13. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Wu, Di & Li, Lei & Zhao, Xiaofei & Peng, Yun & Yang, Pingjin & Peng, Xuya, 2019. "Anaerobic digestion: A review on process monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 1-12.
    16. Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
    17. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    18. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    19. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    20. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1436-1446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.