IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4195-d283196.html
   My bibliography  Save this article

Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability

Author

Listed:
  • Felipe M. Pimenta

    (Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Oceanografia, Campus Trindade, Universidade Federal de Santa Catarina, Florianópolis, SC 88010-970, Brazil)

  • Allan R. Silva

    (Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte, Natal, RN 59078-970, Brazil
    Current address: Universidade Federal Rural de Pernambuco, Serra Talhada, PE 56909-535, Brazil.)

  • Arcilan T. Assireu

    (Instituto de Recursos Naturais, Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá, MG 37500-903, Brazil)

  • Vinicio de S. e Almeida

    (Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte, Natal, RN 59078-970, Brazil)

  • Osvaldo R. Saavedra

    (Centro Tecnológico, Departamento de Engenharia de Eletricidade, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís, MA 65080-040, Brazil)

Abstract

Brazil’s offshore wind resources are evaluated from satellite winds and ocean heat flux datasets. Winds are extrapolated to the height of modern turbines accounting for atmospheric stability. Turbine technical data are combined with wind and bathymetric information for description of the seasonal and latitudinal variability of wind power. Atmospheric conditions vary from unstable situations in the tropics, to neutral and slightly stable conditions in the subtropics. Cabo Frio upwelling in the southeast tends to promote slightly stable conditions during the spring and summer. Likewise, Plata plume cold-water intrusions in southern shelf tends to create neutral to slightly stable situations during the fall and winter. Unstable (stable) conditions are associated with weaker (stronger) vertical wind shear. Wind technical resource, accounting for atmospheric stability and air density distribution, is 725 GW between 0–35 m, 980 GW for 0–50 m, 1.3 TW for 0–100 m and 7.2 TW for the Brazilian Exclusive Economic Zone (EEZ). Resources might vary from 2 to 23% according to the chosen turbine. Magnitudes are 20% lower than previous estimates that considered neutral atmosphere conditions. Strong winds are observed on the north (AP, PA), northeast (MA, PI, CE, RN), southeast (ES, RJ) and southern states (SC, RS). There is significant seasonal complementarity between the north and northeast shelves. When accounting for shelf area, the largest integrated resource is located on the north shelf between 0–20 m. Significant resources are also found in the south for deeper waters.

Suggested Citation

  • Felipe M. Pimenta & Allan R. Silva & Arcilan T. Assireu & Vinicio de S. e Almeida & Osvaldo R. Saavedra, 2019. "Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability," Energies, MDPI, vol. 12(21), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4195-:d:283196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charlotte Bay Hasager, 2014. "Offshore winds mapped from satellite remote sensing," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 594-603, November.
    2. Dhanju, Amardeep & Whitaker, Phillip & Kempton, Willett, 2008. "Assessing offshore wind resources: An accessible methodology," Renewable Energy, Elsevier, vol. 33(1), pages 55-64.
    3. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    4. Pimenta, Felipe & Kempton, Willett & Garvine, Richard, 2008. "Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil," Renewable Energy, Elsevier, vol. 33(11), pages 2375-2387.
    5. De Decker, Jan & Woyte, Achim, 2013. "Review of the various proposals for the European offshore grid," Renewable Energy, Elsevier, vol. 49(C), pages 58-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    2. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Felipe M. Pimenta & Osvaldo R. Saavedra & Denisson Q. Oliveira & Arcilan T. Assireu & Audálio R. Torres Júnior & Ramon M. de Freitas & Francisco L. Albuquerque Neto & Denivaldo C. P. Lopes & Clóvis B., 2023. "Characterization of Wind Resources of the East Coast of Maranhão, Brazil," Energies, MDPI, vol. 16(14), pages 1-42, July.
    4. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    5. Nezhad, M. Majidi & Neshat, M. & Heydari, A. & Razmjoo, A. & Piras, G. & Garcia, D. Astiaso, 2021. "A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement," Renewable Energy, Elsevier, vol. 172(C), pages 1301-1313.
    6. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    7. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    8. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    10. Arcilan T. Assireu & Felipe M. Pimenta & Ramon M. de Freitas & Osvaldo R. Saavedra & Francisco L. A. Neto & Audálio R. Torres Júnior & Clóvis B. M. Oliveira & Denivaldo C. P. Lopes & Shigeaki L. de Li, 2022. "EOSOLAR Project: Assessment of Wind Resources of a Coastal Equatorial Region of Brazil—Overview and Preliminary Results," Energies, MDPI, vol. 15(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    2. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    3. Dvorak, Michael J. & Archer, Cristina L. & Jacobson, Mark Z., 2010. "California offshore wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1244-1254.
    4. Sheridan, Blaise & Baker, Scott D. & Pearre, Nathaniel S. & Firestone, Jeremy & Kempton, Willett, 2012. "Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast," Renewable Energy, Elsevier, vol. 43(C), pages 224-233.
    5. Tiny Remmers & Fiona Cawkwell & Cian Desmond & Jimmy Murphy & Eirini Politi, 2019. "The Potential of Advanced Scatterometer (ASCAT) 12.5 km Coastal Observations for Offshore Wind Farm Site Selection in Irish Waters," Energies, MDPI, vol. 12(2), pages 1-16, January.
    6. Elsner, Paul & Suarez, Suzette, 2019. "Renewable energy from the high seas: Geo-spatial modelling of resource potential and legal implications for developing offshore wind projects beyond the national jurisdiction of coastal States," Energy Policy, Elsevier, vol. 128(C), pages 919-929.
    7. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    8. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Sylvester Stallone Pereira de Azevedo & Amaro Olimpio Pereira Junior & Neilton Fidelis da Silva & Renato Samuel Barbosa de Araújo & Antonio Aldísio Carlos Júnior, 2020. "Assessment of Offshore Wind Power Potential along the Brazilian Coast," Energies, MDPI, vol. 13(10), pages 1-24, May.
    10. Mattar, Cristian & Borvarán, Dager, 2016. "Offshore wind power simulation by using WRF in the central coast of Chile," Renewable Energy, Elsevier, vol. 94(C), pages 22-31.
    11. Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
    12. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    13. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Naidu, Natansh K. & Savsani, Vimal, 2017. "Application of reanalysis data to estimate offshore wind potential in EEZ of India based on marine ecosystem considerations," Energy, Elsevier, vol. 118(C), pages 622-631.
    14. Gadad, Sanjeev & Deka, Paresh Chandra, 2016. "Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale," Applied Energy, Elsevier, vol. 176(C), pages 157-170.
    15. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    16. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    17. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Lima, Danielle K.S. & Leão, Ruth P.S. & dos Santos, Antônio C.S. & de Melo, Francisca D.C. & Couto, Vinícius M. & de Noronha, Aurélio W.T. & Oliveira, Demercil S., 2015. "Estimating the offshore wind resources of the State of Ceará in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 203-221.
    19. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    20. Cheng-Dar Yue & Che-Chih Liu & Chien-Cheng Tu & Ta-Hui Lin, 2019. "Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources," Energies, MDPI, vol. 12(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4195-:d:283196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.