IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5555-d1200306.html
   My bibliography  Save this article

Characterization of Wind Resources of the East Coast of Maranhão, Brazil

Author

Listed:
  • Felipe M. Pimenta

    (Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis 88040-900, SC, Brazil)

  • Osvaldo R. Saavedra

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

  • Denisson Q. Oliveira

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

  • Arcilan T. Assireu

    (Instituto de Recursos Naturais, Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá 37500-903, MG, Brazil)

  • Audálio R. Torres Júnior

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

  • Ramon M. de Freitas

    (Camargo Schubert Wind Engineering, Rua Juvenal Galeno, 55, Jardim Social, Curitiba 82520-030, PR, Brazil)

  • Francisco L. Albuquerque Neto

    (Applied Meteorology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro 21941-916, RJ, Brazil)

  • Denivaldo C. P. Lopes

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

  • Clóvis B. M. Oliveira

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

  • Shigeaki L. de Lima

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

  • João C. de Oliveira Neto

    (Engenharia de Energia, Universidade Federal de Santa Catarina, Campus Araranguá, Rua Pedro João Pereira 150, Mato Alto, Araranguá 88905-120, SC, Brazil)

  • Rafael B. S. Veras

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís 65080-040, MA, Brazil)

Abstract

The objective of this work is to assess the wind resources of the east coast of Maranhão, Brazil. Wind profilers were combined with micrometeorological towers and atmospheric reanalysis to investigate micro- and mesoscale aspects of wind variability. Field campaigns recorded winds in the dry and wet seasons, under the influence of the Intertropical Convergence Zone. The dry season was characterized by strong winds (8 to 12 m s − 1 ) from the northeast. Surface heat fluxes were generally positive (250 to 320 W m − 2 ) at midday and negative (−10 to −20 W m − 2 ) during the night. Convective profiles predominated near the beach, with strongly stable conditions rarely occurring before sunrise. Further inland, convective to strongly convective profiles occurred during the day, and neutral to strongly stable profiles at night. Wind speeds decreased during the rainy season (4 to 8 m s − 1 ), with increasingly easterly and southeasterly components. Cloud cover and precipitation reduced midday heat fluxes (77 W m − 2 ). Profiles were convective during midday and stable to strongly stable at night. Terrain roughness increased with distance from the ocean ranging from smooth surfaces ( z o = 0.95 mm) and rough pastures ( z o = 15.33 mm) to crops and bushes ( z o = 52.68 mm), and trees and small buildings ( z o = 246.46 mm) farther inland. Seasonal variations of the mean flow and sea and land breezes produced distinct diurnal patterns of wind speeds. The strongest (weakest) breeze amplitudes were observed in the dry (rainy) period. Daily changes in heat fluxes and fetch over land controlled the characteristics of wind profiles. During sea breezes, winds approached the coast at right angles, resulting in shorter fetches over land that maintained or enhanced oceanic convective conditions. During land breezes, winds blew from the mainland or with acute angles against the coastline, resulting in large fetches with nighttime surface cooling, generating strongly stable profiles. Coastal observations demonstrated that with increasing monopiles from 100 to 130 m it is possible to obtain similar capacity factors of beachfront turbines.

Suggested Citation

  • Felipe M. Pimenta & Osvaldo R. Saavedra & Denisson Q. Oliveira & Arcilan T. Assireu & Audálio R. Torres Júnior & Ramon M. de Freitas & Francisco L. Albuquerque Neto & Denivaldo C. P. Lopes & Clóvis B., 2023. "Characterization of Wind Resources of the East Coast of Maranhão, Brazil," Energies, MDPI, vol. 16(14), pages 1-42, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5555-:d:1200306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    2. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    3. Pimenta, Felipe M. & Assireu, Arcilan T., 2015. "Simulating reservoir storage for a wind-hydro hydrid system," Renewable Energy, Elsevier, vol. 76(C), pages 757-767.
    4. Radünz, William Corrêa & Sakagami, Yoshiaki & Haas, Reinaldo & Petry, Adriane Prisco & Passos, Júlio César & Miqueletti, Mayara & Dias, Eduardo, 2021. "Influence of atmospheric stability on wind farm performance in complex terrain," Applied Energy, Elsevier, vol. 282(PA).
    5. Felipe M. Pimenta & Allan R. Silva & Arcilan T. Assireu & Vinicio de S. e Almeida & Osvaldo R. Saavedra, 2019. "Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability," Energies, MDPI, vol. 12(21), pages 1-21, November.
    6. Silva, Allan Rodrigues & Pimenta, Felipe Mendonça & Assireu, Arcilan Trevenzoli & Spyrides, Maria Helena Constantino, 2016. "Complementarity of Brazil׳s hydro and offshore wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 413-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    5. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    6. Gonzalez-Salazar, Miguel & Poganietz, Witold Roger, 2021. "Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America," Renewable Energy, Elsevier, vol. 174(C), pages 453-467.
    7. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    8. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    9. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    10. Radünz, William Corrêa & de Almeida, Everton & Gutiérrez, Alejandro & Acevedo, Otávio Costa & Sakagami, Yoshiaki & Petry, Adriane Prisco & Passos, Júlio César, 2022. "Nocturnal jets over wind farms in complex terrain," Applied Energy, Elsevier, vol. 314(C).
    11. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    12. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    13. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    14. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    15. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    17. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    18. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    19. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    20. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5555-:d:1200306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.