IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3719-d271886.html
   My bibliography  Save this article

The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines

Author

Listed:
  • Edson Bortoni

    (Electric and Energy Systems Institute, Itajubá Federal University, Itajubá 37500-903, Brazil)

  • Zulcy de Souza

    (Institute of Natural Resources, Itajubá Federal University, Itajubá 37500-903, Brazil)

  • Augusto Viana

    (Institute of Natural Resources, Itajubá Federal University, Itajubá 37500-903, Brazil)

  • Helcio Villa-Nova

    (Institute of Mechanical Engineering, Itajubá Federal University, Itajubá 37500-903, Brazil)

  • Ângelo Rezek

    (Electric and Energy Systems Institute, Itajubá Federal University, Itajubá 37500-903, Brazil)

  • Luciano Pinto

    (Generation Projects Implementation Department, Furnas Centrais Elétricas, Goiânia 74923-650, Brazil)

  • Roberto Siniscalchi

    (Minas Production Department, Furnas Centrais Elétricas, São José da Barra 37945-970, Brazil)

  • Rafael Bragança

    (Electric and Energy Systems Institute, Itajubá Federal University, Itajubá 37500-903, Brazil)

  • José Bernardes

    (Electric and Energy Systems Institute, Itajubá Federal University, Itajubá 37500-903, Brazil)

Abstract

Climate change and environmental degradation has resulted in a reduction in water inflow at hydropower plants, as well as a decrease in reservoir levels. Existing hydropower plants suffer from water head reduction, mainly with decrease in efficiency of energy conversion in hydro turbines. This paper showcases the benefits of operations with variable speed in existing hydropower plants, when working at a lower water head than the rated one. Theoretical analyses and tests were performed in a special constructed laboratorial setup aiming at evaluating the amount of efficiency recovery with variable speed operation. Connection alternatives for a constant frequency grid and applications of the learned concepts in an existent hydropower plant are presented. The investigations were applied to the Furnas hydropower plant. The results point out that economic feasibility of the application can be achieved.

Suggested Citation

  • Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3719-:d:271886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ludovic Gaudard & Manfred Gilli & Franco Romerio, 2013. "Climate Change Impacts on Hydropower Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5143-5156, December.
    2. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    3. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    4. Velasco, D. & Trujillo, C.L. & Peña, R.A., 2011. "Power transmission in direct current. Future expectations for Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 759-765, January.
    5. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    6. Shin‐ichi Inage, 2015. "The role of large‐scale energy storage under high shares of renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 115-132, January.
    7. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    8. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    9. Bakhsh, Farhad Ilahi & Khatod, Dheeraj Kumar, 2016. "A new synchronous generator based wind energy conversion system feeding an isolated load through variable frequency transformer," Renewable Energy, Elsevier, vol. 86(C), pages 106-116.
    10. Schmidt, J. & Kemmetmüller, W. & Kugi, A., 2017. "Modeling and static optimization of a variable speed pumped storage power plant," Renewable Energy, Elsevier, vol. 111(C), pages 38-51.
    11. Scott, Christopher A. & Pierce, Suzanne A. & Pasqualetti, Martin J. & Jones, Alice L. & Montz, Burrell E. & Hoover, Joseph H., 2011. "Policy and institutional dimensions of the water-energy nexus," Energy Policy, Elsevier, vol. 39(10), pages 6622-6630, October.
    12. Liu, Li-qun & Liu, Chun-xia, 2016. "VSCs-HVDC may improve the Electrical Grid Architecture in future world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1162-1170.
    13. Rahi, O.P. & Chandel, A.K., 2015. "Refurbishment and uprating of hydro power plants—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 726-737.
    14. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    15. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    16. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    17. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    18. Fernandes, Gláucia & Gomes, Leonardo Lima & Brandão, Luiz Eduardo Teixeira, 2018. "A risk-hedging tool for hydro power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 370-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baoling Guo & Amgad Mohamed & Seddik Bacha & Mazen Alamir & Cédric Boudinet & Julien Pouget, 2020. "Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations," Energies, MDPI, vol. 13(21), pages 1-22, November.
    2. Wang, Wen-Quan & Yu, Zhi-Feng & Yan, Yan & Wei, Xin-Yu, 2024. "Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions," Energy, Elsevier, vol. 302(C).
    3. Lei, Shuaihao & Cheng, Li & Sheng, Weigao, 2024. "Study on power losses and pressure fluctuations of diffuser mixed flow pump as turbine on different power generation speeds based on energy power models," Renewable Energy, Elsevier, vol. 237(PC).
    4. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    5. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    6. He Wang & Zhijie Ma, 2021. "Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation," Energies, MDPI, vol. 14(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    2. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    3. Hennessey, Ryan & Pittman, Jeremy & Morand, Annette & Douglas, Allan, 2017. "Co-benefits of integrating climate change adaptation and mitigation in the Canadian energy sector," Energy Policy, Elsevier, vol. 111(C), pages 214-221.
    4. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    5. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    6. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    7. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    8. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    9. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    10. Giudici, Federico & Castelletti, Andrea & Garofalo, Elisabetta & Giuliani, Matteo & Maier, Holger R., 2019. "Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands," Applied Energy, Elsevier, vol. 250(C), pages 605-616.
    11. Lubega, William N. & Farid, Amro M., 2014. "Quantitative engineering systems modeling and analysis of the energy–water nexus," Applied Energy, Elsevier, vol. 135(C), pages 142-157.
    12. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    13. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    14. Muhanji, Steffi Olesi & Barrows, Clayton & Macknick, Jordan & Farid, Amro M., 2021. "An enterprise control assessment case study of the energy–water nexus for the ISO New England system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky & Al-Awami, Ali Taleb, 2023. "Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid," Applied Energy, Elsevier, vol. 335(C).
    16. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    17. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    18. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    19. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Manuel Parraga & José Vuelvas & Benjamín González-Díaz & Leonardo Rodríguez-Urrego & Arturo Fajardo, 2024. "A Systematic Review of Isolated Water and Energy Microgrids: Infrastructure, Optimization of Management Strategies, and Future Trends," Energies, MDPI, vol. 17(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3719-:d:271886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.