IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3246-d260213.html
   My bibliography  Save this article

Reactive Power Optimization of a Distribution System Based on Scene Matching and Deep Belief Network

Author

Listed:
  • Junyong Wu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Chen Shi

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Meiyang Shao

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Ran An

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Xiaowen Zhu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Xing Huang

    (ABB China Ltd., Beijing 100015, China)

  • Rong Cai

    (ABB China Ltd., Beijing 100015, China)

Abstract

With a large number of distributed generators (DGs) and electrical vehicles (EVs) integrated into the power distribution system, the complexity of distribution system operation is increased, which arises to higher requirements for online reactive power optimization. This paper proposes two methods for online reactive power optimization, a scene-matching method based on Random Matrix (RM) features and a deep learning method based on Deep Belief Network (DBN). Firstly, utilizing the operation and ambient Big Data (BD) of the distribution system, we construct the high-dimension Random Matrices and extract 57 state features for the subsequent scene-matching and DBN training. Secondly, the feature-based scene-matching method is proposed. Furtherly, to effectively deal with the uncertainty of DGs and to avoid the performance deterioration of the scene-matching method under a new unknown scene, the DBN-based model is constructed and trained, with the former features as the inputs and the conventional reactive power control solutions as the outputs. This DBN model can learn the nonlinear complicated relationship between the system features and the reactive power control solutions. Finally, the comprehensive case studies have been conducted on the modified IEEE-37 nodes active distribution system, and the performances of the proposed two methods are compared with the conventional method. The results show that the DBN-based method possesses the better performance than the others, and it can reduce the network losses and node voltage deviations obviously, even under the new unknown and unmatched scenes. It does not depend on the distribution system model and parameters anymore and can provide online decision-making more quickly. The discussions of the two methods under different DG penetrations and the historical data volume were given, verifying the adaptability, robustness and generalization ability of the DBN-based method.

Suggested Citation

  • Junyong Wu & Chen Shi & Meiyang Shao & Ran An & Xiaowen Zhu & Xing Huang & Rong Cai, 2019. "Reactive Power Optimization of a Distribution System Based on Scene Matching and Deep Belief Network," Energies, MDPI, vol. 12(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3246-:d:260213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shunjiang Lin & Sen He & Haipeng Zhang & Mingbo Liu & Zhiqiang Tang & Hao Jiang & Yunong Song, 2019. "Robust Optimal Allocation of Decentralized Reactive Power Compensation in Three-Phase Four-Wire Low-Voltage Distribution Networks Considering the Uncertainty of Photovoltaic Generation," Energies, MDPI, vol. 12(13), pages 1-20, June.
    2. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    3. Junwei Cao & Wanlu Zhang & Zeqing Xiao & Haochen Hua, 2019. "Reactive Power Optimization for Transient Voltage Stability in Energy Internet via Deep Reinforcement Learning Approach," Energies, MDPI, vol. 12(8), pages 1-17, April.
    4. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    5. Jun Xie & Chunxiang Liang & Yichen Xiao, 2018. "Reactive Power Optimization for Distribution Network Based on Distributed Random Gradient-Free Algorithm," Energies, MDPI, vol. 11(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seok-Il Go & Sang-Yun Yun & Seon-Ju Ahn & Joon-Ho Choi, 2020. "Voltage and Reactive Power Optimization Using a Simplified Linear Equations at Distribution Networks with DG," Energies, MDPI, vol. 13(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    2. Ke Yan & Yuting Dai & Meiling Xu & Yuchang Mo, 2019. "Tunnel Surface Settlement Forecasting with Ensemble Learning," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    3. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    4. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    5. Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
    6. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    7. Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
    8. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    9. Liao, Kaihua & Lv, Ligang & Lai, Xiaoming & Zhu, Qing, 2021. "Toward a framework for the multimodel ensemble prediction of soil nitrogen losses," Ecological Modelling, Elsevier, vol. 456(C).
    10. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    11. Gun Il Kim & Beakcheol Jang, 2023. "Petroleum Price Prediction with CNN-LSTM and CNN-GRU Using Skip-Connection," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    12. Kui Wang & Jie Wan & Gang Li & Hao Sun, 2022. "A Hybrid Algorithm-Level Ensemble Model for Imbalanced Credit Default Prediction in the Energy Industry," Energies, MDPI, vol. 15(14), pages 1-18, July.
    13. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo & Rocha, Ana Paula, 2019. "Deep learning in exchange markets," Information Economics and Policy, Elsevier, vol. 47(C), pages 38-51.
    14. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    15. Suárez-Cetrulo, Andrés L. & Burnham-King, Lauren & Haughton, David & Carbajo, Ricardo Simón, 2022. "Wind power forecasting using ensemble learning for day-ahead energy trading," Renewable Energy, Elsevier, vol. 191(C), pages 685-698.
    16. Syed Muhammad Mohsin & Tahir Maqsood & Sajjad Ahmed Madani, 2022. "Solar and Wind Energy Forecasting for Green and Intelligent Migration of Traditional Energy Sources," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    17. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
    18. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    19. Linan Qu & Shujie Zhang & Hsiung-Cheng Lin & Ning Chen & Lingling Li, 2020. "Multiobjective Reactive Power Optimization of Renewable Energy Power Plants Based on Time-and-Space Grouping Method," Energies, MDPI, vol. 13(14), pages 1-15, July.
    20. Sun, Xiaolei & Chen, Xiuwen & Wang, Jun & Li, Jianping, 2020. "Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3246-:d:260213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.