IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2462-d243062.html
   My bibliography  Save this article

3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design

Author

Listed:
  • Jun-hui Zhang

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Gan Liu

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Ruqi Ding

    (Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China)

  • Kun Zhang

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Min Pan

    (Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK)

  • Shihao Liu

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

Abstract

With the compact circuit layout and small size, hydraulic manifolds sometimes cause high pressure loss. The purpose of this paper is to investigate the pressure loss under different circumstances with various geometry features and present solutions to reduce pressure loss. The pressure loss performance is evaluated by both experimental and numerical methods. Verified by the experiments, the numerical simulations are qualified to depict the correct trend of the pressure drop. After the basic analysis of traditional passages, three novel forms are proposed, which are very hard to be manufactured by a common method. Furthermore, the geometrical features are selected optimally by means of full factorial experiments to balance the pressure loss and space requirement. Moreover, taking advantage of 3D printing, it is possible to build the passages in novel forms which are beyond the capacity of conventional manufacturing. Results show that the pressure loss can be reduced considerably by adopting a smooth transition, where the reduction can reach up to 50%.

Suggested Citation

  • Jun-hui Zhang & Gan Liu & Ruqi Ding & Kun Zhang & Min Pan & Shihao Liu, 2019. "3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design," Energies, MDPI, vol. 12(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2462-:d:243062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barbara Zardin & Giovanni Cillo & Carlo Alberto Rinaldini & Enrico Mattarelli & Massimo Borghi, 2017. "Pressure Losses in Hydraulic Manifolds," Energies, MDPI, vol. 10(3), pages 1-21, March.
    2. Quan, Zhongyi & Quan, Long & Zhang, Jinman, 2014. "Review of energy efficient direct pump controlled cylinder electro-hydraulic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 336-346.
    3. Barbara Zardin & Giovanni Cillo & Massimo Borghi & Alessandro D’Adamo & Stefano Fontanesi, 2017. "Pressure Losses in Multiple-Elbow Paths and in V-Bends of Hydraulic Manifolds," Energies, MDPI, vol. 10(6), pages 1-21, June.
    4. Zhang, Yuxin & Chen, Hong & Guo, Konghui & Zhang, Xinjie & Eben Li, Shengbo, 2017. "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation," Applied Energy, Elsevier, vol. 199(C), pages 1-12.
    5. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongfei Li & Ning Dai & Hongtao Wang & Fujun Zhang, 2023. "Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves," Energies, MDPI, vol. 16(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryo Arai & Satoru Sakai & Akihiro Tatsuoka & Qin Zhang, 2021. "Analytical, Experimental, and Numerical Investigation of Energy in Hydraulic Cylinder Dynamics of Agriculture Scale Excavators," Energies, MDPI, vol. 14(19), pages 1-20, September.
    2. Dongfei Li & Ning Dai & Hongtao Wang & Fujun Zhang, 2023. "Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves," Energies, MDPI, vol. 16(4), pages 1-15, February.
    3. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    4. Ge Zhao & Wei Li & Jinsong Zhu, 2019. "A Numerical Investigation of the Influence of Geometric Parameters on the Performance of a Multi-Channel Confluent Water Supply," Energies, MDPI, vol. 12(22), pages 1-21, November.
    5. Chen, Qihuai & Lin, Tianliang & Ren, Haoling & Fu, Shengjie, 2019. "Novel potential energy regeneration systems for hybrid hydraulic excavators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 130-145.
    6. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    7. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    8. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    9. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    10. Lin, Tianliang & Chen, Qiang & Ren, Haoling & Huang, Weiping & Chen, Qihuai & Fu, Shengjie, 2017. "Review of boom potential energy regeneration technology for hydraulic construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 358-371.
    11. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    12. Lin Li & Tiezhu Zhang & Kaiwei Wu & Liqun Lu & Lianhua Lin & Haigang Xu, 2022. "Design and Research on Electro-Hydraulic Drive and Energy Recovery System of the Electric Excavator Boom," Energies, MDPI, vol. 15(13), pages 1-17, June.
    13. Xiangyang Li & Yiting Xi & Dunhui Xiao & Jiaxin Tao, 2021. "Valve Plate Structural Optimal Design and Flow Field Analysis for the Aviation Bidirectional Three-Port Piston Pump," Energies, MDPI, vol. 14(11), pages 1-14, June.
    14. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    15. Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
    16. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    17. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    18. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    19. Gao, Zepeng & Chen, Sizhong & Zhao, Yuzhuang & Liu, Zheng, 2019. "Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension," Energy, Elsevier, vol. 170(C), pages 521-536.
    20. Galluzzi, Renato & Xu, Yijun & Amati, Nicola & Tonoli, Andrea, 2018. "Optimized design and characterization of motor-pump unit for energy-regenerative shock absorbers," Applied Energy, Elsevier, vol. 210(C), pages 16-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2462-:d:243062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.