IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1138-d144422.html
   My bibliography  Save this article

Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural Networks

Author

Listed:
  • Yixing Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Meiqin Liu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zhejing Bao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Senlin Zhang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Short-term load forecasting is an important task for the planning and reliable operation of power grids. High-accuracy forecasting for individual customers helps to make arrangements for generation and reduce electricity costs. Artificial intelligent methods have been applied to short-term load forecasting in past research, but most did not consider electricity use characteristics, efficiency, and more influential factors. In this paper, a method for short-term load forecasting with multi-source data using gated recurrent unit neural networks is proposed. The load data of customers are preprocessed by clustering to reduce the interference of electricity use characteristics. The environmental factors including date, weather and temperature are quantified to extend the input of the whole network so that multi-source information is considered. Gated recurrent unit neural networks are used for extracting temporal features with simpler architecture and less convergence time in the hidden layers. The detailed results of the real-world experiments are shown by the forecasting curve and mean absolute percentage error to prove the availability and superiority of the proposed method compared to the current forecasting methods.

Suggested Citation

  • Yixing Wang & Meiqin Liu & Zhejing Bao & Senlin Zhang, 2018. "Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural Networks," Energies, MDPI, vol. 11(5), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1138-:d:144422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang-Ying Wei & Chih-Hung Tsai & Yi-Chan Chung & Kuo-Hsiung Liao & Hao-En Chueh & Jyh-Shyan Lin, 2017. "A Study of the Hybrid Recurrent Neural Network Model for Electricity Loads Forecasting," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 7(2), pages 21-29, April.
    2. Tao Hong, 2014. "Energy Forecasting: Past, Present, and Future," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
    3. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    4. Daqian Wei & Bo Wang & Gang Lin & Dichen Liu & Zhaoyang Dong & Hesen Liu & Yilu Liu, 2017. "Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report," Energies, MDPI, vol. 10(3), pages 1-22, March.
    5. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    6. Cheng-Wen Lee & Bing-Yi Lin, 2017. "Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting," Energies, MDPI, vol. 10(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Donghun & Kim, Kwanho, 2021. "PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information," Renewable Energy, Elsevier, vol. 173(C), pages 1098-1110.
    2. Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
    3. Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
    4. Dong, Ming & Shi, Jian & Shi, Qingxin, 2020. "Multi-year long-term load forecast for area distribution feeders based on selective sequence learning," Energy, Elsevier, vol. 206(C).
    5. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    6. Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
    7. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).
    8. Yizhen Wang & Ningqing Zhang & Xiong Chen, 2021. "A Short-Term Residential Load Forecasting Model Based on LSTM Recurrent Neural Network Considering Weather Features," Energies, MDPI, vol. 14(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    2. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    3. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    4. Jiao, Jieying & Tang, Zefan & Zhang, Peng & Yue, Meng & Yan, Jun, 2022. "Cyberattack-resilient load forecasting with adaptive robust regression," International Journal of Forecasting, Elsevier, vol. 38(3), pages 910-919.
    5. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    6. Maciejowska, Katarzyna & Nowotarski, Jakub, 2016. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.
    7. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    8. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    9. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    10. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    11. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    12. Swasti R. Khuntia & Jose L. Rueda & Mart A.M.M. Van der Meijden, 2018. "Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model," Energies, MDPI, vol. 11(12), pages 1-19, November.
    13. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    14. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    15. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    16. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    18. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    19. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    20. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1138-:d:144422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.