IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p406-d93644.html
   My bibliography  Save this article

Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report

Author

Listed:
  • Daqian Wei

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Bo Wang

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Gang Lin

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Dichen Liu

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Zhaoyang Dong

    (School of Electrical Engineering and Telecommunications, University of NSW, Sydney 2052, Australia)

  • Hesen Liu

    (Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA)

  • Yilu Liu

    (Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA)

Abstract

This paper documents the condition-based maintenance (CBM) of power transformers, the analysis of which relies on two basic data groups: structured (e.g., numeric and categorical) and unstructured (e.g., natural language text narratives) which accounts for 80% of data required. However, unstructured data comprised of malfunction inspection reports, as recorded by operation and maintenance of the power grid, constitutes an abundant untapped source of power insights. This paper proposes a method for malfunction inspection report processing by deep learning, which combines the text data mining–oriented recurrent neural networks (RNN) with long short-term memory (LSTM). In this paper, the effectiveness of the RNN-LSTM network for modeling inspection data is established with a straightforward training strategy in which we replicate targets at each sequence step. Then, the corresponding fault labels are given in datasets, in order to calculate the accuracy of fault classification by comparison with the original data labels and output samples. Experimental results can reflect how key parameters may be selected in the configuration of the key variables to achieve optimal results. The accuracy of the fault recognition demonstrates that the method we proposed can provide a more effective way for grid inspection personnel to deal with unstructured data.

Suggested Citation

  • Daqian Wei & Bo Wang & Gang Lin & Dichen Liu & Zhaoyang Dong & Hesen Liu & Yilu Liu, 2017. "Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report," Energies, MDPI, vol. 10(3), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:406-:d:93644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    2. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    3. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    4. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 1.
    5. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    6. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    7. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongcong Luo & Jing Ma & Chi Li, 2020. "Entity name recognition of cross-border e-commerce commodity titles based on TWs-LSTM," Electronic Commerce Research, Springer, vol. 20(2), pages 405-426, June.
    2. Jiyoung Woo & Jaeseok Yun, 2020. "Content Noise Detection Model Using Deep Learning in Web Forums," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    3. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    4. Yixing Wang & Meiqin Liu & Zhejing Bao & Senlin Zhang, 2018. "Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural Networks," Energies, MDPI, vol. 11(5), pages 1-19, May.
    5. Hongchen Li & Zhong Yang & Jiaming Han & Shangxiang Lai & Qiuyan Zhang & Chi Zhang & Qianhui Fang & Guoxiong Hu, 2020. "TL-Net: A Novel Network for Transmission Line Scenes Classification," Energies, MDPI, vol. 13(15), pages 1-15, July.
    6. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    7. Kai Chen & Rabea Jamil Mahfoud & Yonghui Sun & Dongliang Nan & Kaike Wang & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Defect Texts Mining of Secondary Device in Smart Substation with GloVe and Attention-Based Bidirectional LSTM," Energies, MDPI, vol. 13(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    3. Stephan E. Maurer & Andrei V. Potlogea, 2021. "Male‐biased Demand Shocks and Women's Labour Force Participation: Evidence from Large Oil Field Discoveries," Economica, London School of Economics and Political Science, vol. 88(349), pages 167-188, January.
    4. Tie Hua Zhou & Ling Wang & Keun Ho Ryu, 2015. "Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation," Sustainability, MDPI, vol. 7(5), pages 1-18, May.
    5. T. Karski, 2019. "Opinions and Controversies in Problem of The So-Called Idiopathic Scoliosis. Information About Etiology, New Classification and New Therapy," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 9612-9616, January.
    6. Wesley Mendes-da-Silva, 2020. "What Makes an Article be More Cited?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 24(6), pages 507-513.
    7. Wisdom Akpalu & Mintewab Bezabih, 2015. "Tenure Insecurity, Climate Variability and Renting out Decisions among Female Small-Holder Farmers in Ethiopia," Sustainability, MDPI, vol. 7(6), pages 1-16, June.
    8. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    9. David Harborth & Sebastian Pape, 2020. "Empirically Investigating Extraneous Influences on the “APCO” Model—Childhood Brand Nostalgia and the Positivity Bias," Future Internet, MDPI, vol. 12(12), pages 1-16, December.
    10. Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    11. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    12. A. B. Atkinson & Stephen P. Jenkins, 2020. "A Different Perspective on the Evolution of UK Income Inequality," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(2), pages 253-266, June.
    13. Haiyan Xu & Yanhui Ding & Jing Sun & Kun Zhao & Yuanjian Chen, 2019. "Dynamic Group Recommendation Based on the Attention Mechanism," Future Internet, MDPI, vol. 11(9), pages 1-15, September.
    14. Adina Letiţia Negruşa & Valentin Toader & Aurelian Sofică & Mihaela Filofteia Tutunea & Rozalia Veronica Rus, 2015. "Exploring Gamification Techniques and Applications for Sustainable Tourism," Sustainability, MDPI, vol. 7(8), pages 1-30, August.
    15. Ahmad N. Alkenani & Mohammad Ashraf & Ghulam Mohammad, 2020. "Quantum Codes from Constacyclic Codes over the Ring F q [ u 1 , u 2 ]/〈 u 1 2 - u 1 , u 2 2 - u 2 , u 1 u 2 - u 2 u 1 〉," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    16. Shang-Yuan Chen & Jui-Ting Huang, 2012. "A Smart Green Building: An Environmental Health Control Design," Energies, MDPI, vol. 5(5), pages 1-16, May.
    17. Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
    18. Xiaoshu Cao & Feiwen Liang & Huiling Chen & Yongwei Liu, 2017. "Circuity Characteristics of Urban Travel Based on GPS Data: A Case Study of Guangzhou," Sustainability, MDPI, vol. 9(11), pages 1-21, November.
    19. S. B. Reshetnikov & M. R. Skirdov, 2017. "Analysis of methodological approaches to determination and assessment of the human capital," Russian Journal of Industrial Economics, MISIS, vol. 10(1).
    20. Mi Jung Son & Jin Han Park & Ka Hyun Ko, 2019. "Some Hesitant Fuzzy Hamacher Power-Aggregation Operators for Multiple-Attribute Decision-Making," Mathematics, MDPI, vol. 7(7), pages 1-33, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:406-:d:93644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.