IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1508.html
   My bibliography  Save this paper

Electric load forecasting with recency effect: A big data approach

Author

Listed:
  • Pu Wang
  • Bidong Liu
  • Tao Hong

Abstract

Temperature plays a key role in driving electricity demand. We adopt "recency effect", a term originated from psychology, to denote the fact that electricity demand is affected by the temperatures of preceding hours. In the load forecasting literature, the temperature variables are often constructed in the form of lagged hourly temperatures and moving average temperatures. Over the past decades, computing power has been limiting the amount of temperature variables that can be used in a load forecasting model. In this paper, we present a comprehensive study on modeling recency effect through a big data approach. We take advantage of the modern computing power to answer a fundamental question: how many lagged hourly temperatures and/or moving average temperatures are needed in a regression model to fully capture recency effect without compromising the forecasting accuracy? Using the case study based on data from the load forecasting track of the Global Energy Forecasting Competition 2012, we first demonstrate that a model with recency effect outperforms its counterpart (a.k.a., Tao’s Vanilla Benchmark Model) in forecasting the load series at the top (aggregated) level by 18% to 21%. We then apply recency effect modeling to customize load forecasting models at low level of a geographic hierarchy, again showing the superiority over the benchmark model by 12% to 15% on average. Finally, we discuss four different implementations of the recency effect modeling by hour of a day.

Suggested Citation

  • Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc1508
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_15_08.pdf
    File Function: Final version, 2015
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    2. Ben Taieb, Souhaib & Hyndman, Rob J., 2014. "A gradient boosting approach to the Kaggle load forecasting competition," International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
    3. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    4. Bidong Liu & Jakub Nowotarski & Tao Hong & Rafal Weron, 2015. "Probabilistic load forecasting via Quantile Regression Averaging on sister forecasts," HSC Research Reports HSC/15/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Tao Hong, 2014. "Energy Forecasting: Past, Present, and Future," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, pages 43-48.
    7. Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
    8. Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
    9. Tao Hong & Jason Wilson & Jingrui Xie, 2013. "Long term probabilistic load forecasting and normalization with hourly information," HSC Research Reports HSC/13/13, Hugo Steinhaus Center, Wroclaw University of Technology.
    10. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    11. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:gjofsm:v:18:y:2017:i:3:d:10.1007_s40171-017-0159-3 is not listed on IDEAS
    2. repec:eee:intfor:v:34:y:2018:i:1:p:89-104 is not listed on IDEAS
    3. Jakub Nowotarski & Rafal Weron, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," HSC Research Reports HSC/16/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    4. Ziel, Florian & Liu, Bidong, 2016. "Lasso estimation for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1029-1037.
    5. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, Open Access Journal, vol. 9(8), pages 1-40, August.
    6. Bidong Liu & Jiali Liu & Tao Hong, 2015. "Sister models for load forecast combination," HSC Research Reports HSC/15/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    7. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    8. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    9. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.

    More about this item

    Keywords

    Electric load forecasting; Regression; Recency effect; Big data approach; Global Energy Forecasting Competition;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1508. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rafal Weron). General contact details of provider: http://edirc.repec.org/data/hspwrpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.