IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3372-d187167.html
   My bibliography  Save this article

Expected Global Warming Impacts on the Spatial Distribution and Productivity for 2050 of Five Species of Trees Used in the Wood Energy Supply Chain in France

Author

Listed:
  • Emmanuel Garbolino

    (MINES ParisTech / Paris Sciences et Lettres PSL Université Paris, Centre for research on Risks and Crises (CRC), 1 rue Claude Daunesse, CS 10207, 06904 Sophia Antipolis CEDEX, France)

  • Warren Daniel

    (Warren DANIEL, Plant and Ecosystems (PLECO), University of Antwerp, Campus Drie Eiken - C 0.13, Universiteitsplein 1, BE-2610 Wilrijk, Belgium)

  • Guillermo Hinojos Mendoza

    (Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología, Periférico Francisco R. Almada Km. 1, Chihuahua 31000, Mexico)

Abstract

The development of collective and industrial energy systems, based on wood biomass, knows a significant increase since the end of the 90’s in France, with more than 6000 power plants and heating plants developed currently. Because these systems are built for a minimal duration of 30 years, it is relevant to assess the availability of wood resources according to the potential impacts of global warming on five tree species mainly used in such a supply chain. The assessment of the potential spatial distribution of the suitable areas of these trees in 2050, by using the IPCC (Intergovernmental Panel on Climate Change) RCP6.0 scenario (Representative Concentration Pathway), shows an average decrease of 22% of the plots in comparison with the current situation. The results also point out that mountain areas would maintain a high probability of the development of four tree species. The assessment of the Net Primary Productivity (NPP) underlines a potential decrease for 93% of the plots in 2050, and an increase of this parameter in mountain areas. According to these assumptions, the proposed ecosystem based methodology can be considered as a prospective approach to support stakeholders’ decisions for the development of the wood energy supply chain.

Suggested Citation

  • Emmanuel Garbolino & Warren Daniel & Guillermo Hinojos Mendoza, 2018. "Expected Global Warming Impacts on the Spatial Distribution and Productivity for 2050 of Five Species of Trees Used in the Wood Energy Supply Chain in France," Energies, MDPI, vol. 11(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3372-:d:187167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eliasson, Lars & Eriksson, Anders & Mohtashami, Sima, 2017. "Analysis of factors affecting productivity and costs for a high-performance chip supply system," Applied Energy, Elsevier, vol. 185(P1), pages 497-505.
    2. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    3. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    2. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    3. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    4. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    5. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    6. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    7. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    8. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    9. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    10. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    11. Viana, H. & Aranha, J. & Lopes, D. & Cohen, Warren B., 2012. "Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models," Ecological Modelling, Elsevier, vol. 226(C), pages 22-35.
    12. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    13. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    14. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    15. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    16. Mensah, Theophilus Nii Odai & Oyewo, Ayobami Solomon & Breyer, Christian, 2021. "The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana," Renewable Energy, Elsevier, vol. 173(C), pages 297-317.
    17. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    18. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    19. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    20. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3372-:d:187167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.