IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2657-d173862.html
   My bibliography  Save this article

Effects of Organosolv Pretreatment Using Temperature-Controlled Bench-Scale Ball Milling on Enzymatic Saccharification of Miscanthus × giganteus

Author

Listed:
  • Tae Hoon Kim

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
    R&D Center, SugarEn Co., Ltd., Yongin, Gyeonggi-do 16890, Korea)

  • Dongjoong Im

    (R&D Center, SugarEn Co., Ltd., Yongin, Gyeonggi-do 16890, Korea)

  • Kyeong Keun Oh

    (R&D Center, SugarEn Co., Ltd., Yongin, Gyeonggi-do 16890, Korea
    Department of Chemical Engineering, Dankook University, Yongin, Gyeonggi-do 16890, Korea)

  • Tae Hyun Kim

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea)

Abstract

The effect of organosolv pretreatment was investigated using a 30 L bench-scale ball mill reactor that was capable of simultaneously performing physical and chemical pretreatment. Various reaction conditions were tried in order to discover the optimal conditions for the minimal cellulose loss and enhanced enzymatic digestibility of Miscanthus × giganteus (MG), with conditions varying from room temperature to 170 °C for reaction temperature, from 30 to 120 min of reaction time, from 30% to 60% ethanol concentration, and a liquid/solid ratio (L/S) of 10–20 under non-catalyst conditions. The pretreatment effects were evaluated by chemical compositional analysis, enzymatic digestibility test and X-ray diffraction of the treated samples. The pretreatment conditions for the highest glucan digestibility yield were determined as 170 °C, reaction time of 90 min, ethanol concentration of 40% and L/S = 10. With these pretreatment conditions, the XMG (xylan + mannan + galactan) fractionation yield and delignification were 84.4% and 53.2%, respectively. The glucan digestibility of treated MG after the aforementioned pretreatment conditions was 86.0% with 15 filter paper units (FPU) of cellulase (Cellic ® CTec2) per g-glucan enzyme loading.

Suggested Citation

  • Tae Hoon Kim & Dongjoong Im & Kyeong Keun Oh & Tae Hyun Kim, 2018. "Effects of Organosolv Pretreatment Using Temperature-Controlled Bench-Scale Ball Milling on Enzymatic Saccharification of Miscanthus × giganteus," Energies, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2657-:d:173862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Christos Nitsos & Ulrika Rova & Paul Christakopoulos, 2017. "Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications," Energies, MDPI, vol. 11(1), pages 1-23, December.
    3. Kim, Tae Hoon & Kim, Tae Hyun, 2014. "Overview of technical barriers and implementation of cellulosic ethanol in the U.S," Energy, Elsevier, vol. 66(C), pages 13-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Seong Ju & Um, Byung Hwan, 2020. "Effect of thermochemically fractionation before hydrothermal liquefaction of herbaceous biomass on biocrude characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 612-622.
    2. Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. Wei-Hsin Chen & Keat Teong Lee & Hwai Chyuan Ong, 2019. "Biofuel and Bioenergy Technology," Energies, MDPI, vol. 12(2), pages 1-12, January.
    4. Tae Hoon Kim & Hyun Jin Ryu & Kyeong Keun Oh, 2019. "Improvement of Organosolv Fractionation Performance for Rice Husk through a Low Acid-Catalyzation," Energies, MDPI, vol. 12(9), pages 1-11, May.
    5. Zhong, Yuan & Frost, Henry & Bustamante, Mauricio & Li, Song & Liu, Yan Susie & Liao, Wei, 2020. "A mechano-biocatalytic one-pot approach to release sugars from lignocellulosic materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    2. Tae Hoon Kim & Seung Hyeon Park & Tin Diep Trung Le & Tae Hyun Kim & Kyeong Keun Oh, 2022. "Effects of Colloid Milling and Hot-Water Pretreatment on Physical Properties and Enzymatic Digestibility of Oak Wood," Energies, MDPI, vol. 15(6), pages 1-15, March.
    3. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    4. Tae Hoon Kim & Hyun Kwak & Tae Hyun Kim & Kyeong Keun Oh, 2021. "Reaction Characteristics of Organosolv-Fractionation Process for Selective Extraction of Carbohydrates and Lignin from Rice Husks," Energies, MDPI, vol. 14(3), pages 1-14, January.
    5. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    6. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    7. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    8. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    9. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    10. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    11. Dutta, Sajal Kanti & Halder, Gopinath & Mandal, Mrinal Kanti, 2014. "Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach," Energy, Elsevier, vol. 71(C), pages 579-587.
    12. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Sameer Neve & Dibyendu Sarkar & Zhiming Zhang & Rupali Datta, 2022. "Optimized Production of Second-Generation Bioethanol from a Spent C4 Grass: Vetiver ( Chrysopogon zizanioides )," Energies, MDPI, vol. 15(24), pages 1-12, December.
    14. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    15. Carlos Alberto Torres Cantero & Guadalupe Lopez Lopez & Victor M. Alvarado & Ricardo F. Escobar Jimenez & Jesse Y. Rumbo Morales & Eduardo M. Sanchez Coronado, 2017. "Control Structures Evaluation for a Salt Extractive Distillation Pilot Plant: Application to Bio-Ethanol Dehydration," Energies, MDPI, vol. 10(9), pages 1-29, August.
    16. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    17. Cardona, Eliana & Llano, Biviana & Peñuela, Mariana & Peña, Juan & Rios, Luis Alberto, 2018. "Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions," Energy, Elsevier, vol. 160(C), pages 441-451.
    18. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.
    19. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    20. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2657-:d:173862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.