IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p817-d101707.html
   My bibliography  Save this article

Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment

Author

Listed:
  • Luis Ibarra

    (Tecnológico de Monterrey, Calle del Puente 222, Tlalpan 14380, Mexico)

  • Antonio Rosales

    (Tecnológico de Monterrey, Calle del Puente 222, Tlalpan 14380, Mexico)

  • Pedro Ponce

    (Tecnológico de Monterrey, Calle del Puente 222, Tlalpan 14380, Mexico)

  • Arturo Molina

    (Tecnológico de Monterrey, Calle del Puente 222, Tlalpan 14380, Mexico)

  • Raja Ayyanar

    (School of Electrical Computer and Energy Engineering, Arizona State University, Tempe 85287-5706, Arizona)

Abstract

The smart-grid approach undergoes many difficulties regarding the strategy that will enable its actual implementation. In this paper, an overview of real-time simulation technologies and their applicability to the smart-grid approach are presented as enabling steps toward the smart-grid’s actual implementation. The objective of this work is to contribute with an introductory text for interested readers of real-time systems in the context of modern electric needs and trends. In addition, a comprehensive review of current applications of real-time simulation in electric systems is provided, together with the basis to understand real-time simulation and the topologies and hardware used to implement it. Furthermore, an overview of the evolution of real-time simulators in the industrial and academic background and its current challenges are introduced.

Suggested Citation

  • Luis Ibarra & Antonio Rosales & Pedro Ponce & Arturo Molina & Raja Ayyanar, 2017. "Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment," Energies, MDPI, vol. 10(6), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:817-:d:101707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moiz Muhammad & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Power Hardware-in-the-Loop: Response of Power Components in Real-Time Grid Simulation Environment," Energies, MDPI, vol. 14(3), pages 1-20, January.
    2. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    3. Ignacio Llanez-Caballero & Luis Ibarra & Angel Peña-Quintal & Glendy Catzín-Contreras & Pedro Ponce & Arturo Molina & Ricardo Ramirez-Mendoza, 2023. "The “Smart” Concept from an Electrical Sustainability Viewpoint," Energies, MDPI, vol. 16(7), pages 1-22, March.
    4. Paweł Szcześniak & Iwona Grobelna & Mateja Novak & Ulrik Nyman, 2021. "Overview of Control Algorithm Verification Methods in Power Electronics Systems," Energies, MDPI, vol. 14(14), pages 1-20, July.
    5. Juan R. Lopez & Jose de Jesus Camacho & Pedro Ponce & Brian MacCleery & Arturo Molina, 2022. "A Real-Time Digital Twin and Neural Net Cluster-Based Framework for Faults Identification in Power Converters of Microgrids, Self Organized Map Neural Network," Energies, MDPI, vol. 15(19), pages 1-25, October.
    6. Matthias Stifter & Jose Cordova & Jawad Kazmi & Reza Arghandeh, 2018. "Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications," Energies, MDPI, vol. 11(4), pages 1-21, April.
    7. Juan Roberto López Gutiérrez & Pedro Ponce & Arturo Molina, 2021. "Real-Time Power Electronics Laboratory to Strengthen Distance Learning Engineering Education on Smart Grids and Microgrids," Future Internet, MDPI, vol. 13(9), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    3. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    4. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    5. Chen, Ting & Vandendriessche, Frederik, 2023. "Enabling independent flexibility service providers to participate in electricity markets: A legal analysis of the Belgium case," Utilities Policy, Elsevier, vol. 81(C).
    6. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    7. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    8. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    9. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    11. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    12. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    13. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    14. Jan Stede & Karin Arnold & Christa Dufter & Georg Holtz & Serafin von Roon & Jörn C. Richstein, 2020. "The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany," Discussion Papers of DIW Berlin 1840, DIW Berlin, German Institute for Economic Research.
    15. Barbara Kasulaitis & Callie W. Babbitt & Anna Christina Tyler, 2021. "The role of consumer preferences in reducing material intensity of electronic products," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 435-447, April.
    16. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    17. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    18. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    19. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Prinsloo, Gerro & Dobson, Robert & Mammoli, Andrea, 2018. "Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles," Energy, Elsevier, vol. 147(C), pages 263-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:817-:d:101707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.