IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p93-d87757.html
   My bibliography  Save this article

The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development

Author

Listed:
  • Xin Yan

    (School of Humanities and Economic Management, China University of Geosciences (Beijing), Beijing 100083, China
    These authors contributed equally to this study and shared first authorship.)

  • Jianping Ge

    (School of Humanities and Economic Management, China University of Geosciences (Beijing), Beijing 100083, China
    These authors contributed equally to this study and shared first authorship.)

Abstract

China has become the world’s largest carbon dioxide (CO 2 ) emitter. Sectoral production activities promote economic development while also adding considerably to national CO 2 emissions. Due to their different sectoral structures, each region shows different levels of economic development and CO 2 emissions. The Chinese government hopes to achieve the dual objectives of economic growth and CO 2 emissions reduction by encouraging those sectors that have high economic influence and low environmental influence. Based on the above background, this study constructed an inter-regional sectoral economic influence coefficient (REIC) and a CO 2 emissions influence coefficient (RCIC) based on the basic multi-regional input-output (MRIO) model to analyse the economy-carbon nexus of 17 sectors in 30 regions in China in 2010. The results showed that most Chinese sectors and regions had low CO 2 emissions influences in 2010. However, some sectors showed negative environmental influences. Specifically, the mining-related sectors showed high CO 2 emissions influence with low economic influence. It is encouraging that some light industry and high-end equipment manufacturing sectors had low CO 2 emissions influence with high economic influence. For regions, geographic location and past preferential policies are the most important factors influencing local economic growth and CO 2 emissions reduction. Most inland regions have low economic influence with high or low CO 2 emissions influence. Meanwhile, most coastal regions showed high economic influence with low CO 2 emissions influence. Finally, we propose some policy implications for sectors and regions.

Suggested Citation

  • Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:93-:d:87757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    2. Bing Xue & Yong Geng & Katrin Müller & Chengpeng Lu & Wanxia Ren, 2014. "Understanding the Causality between Carbon Dioxide Emission, Fossil Energy Consumption and Economic Growth in Developed Countries: An Empirical Study," Sustainability, MDPI, vol. 6(2), pages 1-9, February.
    3. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    4. Kuishuang Feng & Yim Ling Siu & Dabo Guan & Klaus Hubacek, 2012. "Analyzing Drivers of Regional Carbon Dioxide Emissions for China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 600-611, August.
    5. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    6. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    7. Singh, Sanjay Kumar, 2006. "Future mobility in India: Implications for energy demand and CO2 emission," Transport Policy, Elsevier, vol. 13(5), pages 398-412, September.
    8. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    9. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    10. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    12. Wang, Yuan & Wang, Wenqin & Mao, Guozhu & Cai, Hua & Zuo, Jian & Wang, Lili & Zhao, Peng, 2013. "Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis," Energy Policy, Elsevier, vol. 62(C), pages 1238-1244.
    13. Ahmad, Ashfaq & Zhao, Yuhuan & Shahbaz, Muhammad & Bano, Sadia & Zhang, Zhonghua & Wang, Song & Liu, Ya, 2016. "Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy," Energy Policy, Elsevier, vol. 96(C), pages 131-143.
    14. Santosh Kumar Sahu, 2014. "Energy Use Patterns and Firm Performance: Evidence from Indian Industries," Working Papers 2014-092, Madras School of Economics,Chennai,India.
    15. Zhang, Wencheng & Peng, Shuijun & Sun, Chuanwang, 2015. "CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input–output model," Energy Policy, Elsevier, vol. 86(C), pages 93-103.
    16. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    17. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    18. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    19. Ping Wang & Bangzhu Zhu, 2016. "Estimating the Contribution of Industry Structure Adjustment to the Carbon Intensity Target: A Case of Guangdong," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    20. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    21. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    2. Jin-Peng Liu & Qian-Ru Yang & Lin He, 2017. "Total-Factor Energy Efficiency (TFEE) Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques," Energies, MDPI, vol. 10(7), pages 1-14, July.
    3. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    4. Yong Shi & Anda Tang & Tongsheng Yao, 2022. "A Study on Inter-Provincial Environmental Pollution Movement in China Based on the Input–Output Method," Energies, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    2. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    3. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    4. Jiansuo Pei & Bo Meng & Fei Wang & Jinjun Xue & Zhongxiu Zhao, 2018. "Production Sharing, Demand Spillovers And Co2 Emissions: The Case Of Chinese Regions In Global Value Chains," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 275-293, March.
    5. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    6. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    7. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    8. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    9. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    10. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    11. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    12. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    13. Liu, Yu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "‘Made in China’: A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information," Applied Energy, Elsevier, vol. 184(C), pages 1106-1113.
    14. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    15. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    16. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    17. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    18. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    19. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    20. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:93-:d:87757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.