IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v13y2025i2p19-d1637228.html
   My bibliography  Save this article

Generalized Recentered Influence Function Regressions

Author

Listed:
  • Javier Alejo

    (Instituto de Economía, Universidad de la República, Montevideo 11200, Uruguay
    These authors contributed equally to this work.)

  • Antonio Galvao

    (Department of Economics, Michigan State University, East Lansing, MI 48824, USA
    These authors contributed equally to this work.)

  • Julián Martínez-Iriarte

    (Department of Economics, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
    These authors contributed equally to this work.)

  • Gabriel Montes-Rojas

    (Instituto Interdisciplinario de Economía Política-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1122, Argentina
    These authors contributed equally to this work.)

Abstract

This paper suggests a generalization of covariate shifts to study distributional impacts on inequality and distributional measures. It builds on the recentered influence function (RIF) regression method, originally designed for location shifts in covariates, and extends it to general policy interventions, such as location–scale or asymmetric interventions. Numerical simulations for the Gini, Theil, and Atkinson indexes demonstrate strong performance across a myriad of cases and distributional measures. An empirical application examining changes in Mincerian equations is presented to illustrate the method.

Suggested Citation

  • Javier Alejo & Antonio Galvao & Julián Martínez-Iriarte & Gabriel Montes-Rojas, 2025. "Generalized Recentered Influence Function Regressions," Econometrics, MDPI, vol. 13(2), pages 1-14, April.
  • Handle: RePEc:gam:jecnmx:v:13:y:2025:i:2:p:19-:d:1637228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/13/2/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/13/2/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. B. Essama-Nssah & Peter J. Lambert, 2012. "Chapter 6 Influence Functions for Policy Impact Analysis," Research on Economic Inequality, in: Inequality, Mobility and Segregation: Essays in Honor of Jacques Silber, pages 135-159, Emerald Group Publishing Limited.
    3. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    4. Atsushi Inoue & Tong Li & Qi Xu, 2021. "Two Sample Unconditional Quantile Effect," Papers 2105.09445, arXiv.org.
    5. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    6. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    7. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
    8. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doan, Tinh & Ha, Van & Tran, Tuyen & Yang, Judy, 2023. "Dynamics of wage inequality over the prolonged economic transformation: The case of Vietnam," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 816-834.
    2. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    3. Trinh Thi, Huong & Simioni, Michel & Thomas-Agnan, Christine, 2018. "Decomposition of changes in the consumption of macronutrients in Vietnam between 2004 and 2014," Economics & Human Biology, Elsevier, vol. 31(C), pages 259-275.
    4. Koomen, Miriam & Backes-Gellner, Uschi, 2022. "Occupational tasks and wage inequality in West Germany: A decomposition analysis," Labour Economics, Elsevier, vol. 79(C).
    5. Daniel Baumgarten & Gabriel Felbermayr & Sybille Lehwald, 2020. "Dissecting Between‐Plant and Within‐Plant Wage Dispersion: Evidence from Germany," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 59(1), pages 85-122, January.
    6. Maximilian Longmuir & Carsten Schröde & Matteo Targa, 2020. "De-Routinization of Jobs and Polarization of Earnings: Evidence from 35 Countries," Working Papers 1397, Economic Research Forum, revised 20 Jun 2020.
    7. Roshchin, Sergey & Yemelina, Natalya, 2021. "Gender wage gap decomposition methods: Comparative analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 62, pages 5-31.
    8. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    9. Ghosh, Pallab Kumar, 2014. "The contribution of human capital variables to changes in the wage distribution function," Labour Economics, Elsevier, vol. 28(C), pages 58-69.
    10. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    11. Luca Giangregorio & Marta Fana, 2024. "What’s behind increasing wage inequality? Explaining the Italian case using RIF-OLS," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 41(1), pages 229-265, April.
    12. Giangregorio Luca & Fana Marta, 2021. "The structure of the labour market and wage inequality using RIF-OLS: the Italian case," JRC Working Papers on Labour, Education and Technology 2021-11, Joint Research Centre.
    13. Martin Biewen & Matthias Seckler, 2019. "Unions, Internationalization, Tasks, Firms, and Worker Characteristics: A Detailed Decomposition Analysis of Rising Wage Inequality in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(4), pages 461-498, December.
    14. Bonaccolto-Töpfer, Marina & Satlukal, Sascha, 2024. "Gender differences in reservation wages: New evidence for Germany," Labour Economics, Elsevier, vol. 91(C).
    15. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    16. Luis Ayala & Javier Martín‐Román & Juan Vicente, 2024. "What contributes to rising inequality in large cities?," Journal of Regional Science, Wiley Blackwell, vol. 64(5), pages 1760-1810, November.
    17. Collischon Matthias, 2019. "Is There a Glass Ceiling over Germany?," German Economic Review, De Gruyter, vol. 20(4), pages 329-359, December.
    18. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    19. Joseph G. Altonji & Prashant Bharadwaj & Fabian Lange, 2012. "Changes in the Characteristics of American Youth: Implications for Adult Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 30(4), pages 783-828.
    20. Martinez-Iriarte, Julian & Sun, Yixiao, 2024. "Identification and estimation of unconditional policy effects of an endogenous binary treatment: An unconditional MTE approach," Journal of Econometrics, Elsevier, vol. 244(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:13:y:2025:i:2:p:19-:d:1637228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.