IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v3y2021i3p36-617d611858.html
   My bibliography  Save this article

Techno-Economic Assessment of IGCC Power Plants Using Gas Switching Technology to Minimize the Energy Penalty of CO 2 Capture

Author

Listed:
  • Szabolcs Szima

    (Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj Napoca, Romania)

  • Carlos Arnaiz del Pozo

    (Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad de Politécnica de Madrid, c/José Gutiérrez Abascal n°2, 28006 Madrid, Spain)

  • Schalk Cloete

    (Flow Technology Group, SINTEF Industry, 7031 Trondheim, Norway)

  • Szabolcs Fogarasi

    (Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj Napoca, Romania)

  • Ángel Jiménez Álvaro

    (Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad de Politécnica de Madrid, c/José Gutiérrez Abascal n°2, 28006 Madrid, Spain)

  • Ana-Maria Cormos

    (Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj Napoca, Romania)

  • Calin-Cristian Cormos

    (Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj Napoca, Romania)

  • Shahriar Amini

    (Flow Technology Group, SINTEF Industry, 7031 Trondheim, Norway)

Abstract

Cost-effective CO 2 capture and storage (CCS) is critical for the rapid global decarbonization effort recommended by climate science. The increase in levelized cost of electricity (LCOE) of plants with CCS is primarily associated to the large energy penalty involved in CO 2 capture. This study therefore evaluates three high-efficiency CCS concepts based on integrated gasification combined cycles (IGCC): (1) gas switching combustion (GSC), (2) GSC with added natural gas firing (GSC-AF) to increase the turbine inlet temperature, and (3) oxygen production pre-combustion (OPPC) that replaces the air separation unit (ASU) with more efficient gas switching oxygen production (GSOP) reactors. Relative to a supercritical pulverized coal benchmark, these options returned CO 2 avoidance costs of 37.8, 22.4 and 37.5 €/ton (including CO 2 transport and storage), respectively. Thus, despite the higher fuel cost and emissions associated with added natural gas firing, the GSC-AF configuration emerged as the most promising solution. This advantage is maintained even at CO 2 prices of 100 €/ton, after which hydrogen firing can be used to avoid further CO 2 cost escalations. The GSC-AF case also shows lower sensitivity to uncertain economic parameters such as discount rate and capacity factor, outperforms other clean energy benchmarks, offers flexibility benefits for balancing wind and solar power, and can achieve significant further performance gains from the use of more advanced gas turbine technology. Based on all these insights, the GSC-AF configuration is identified as a promising solution for further development.

Suggested Citation

  • Szabolcs Szima & Carlos Arnaiz del Pozo & Schalk Cloete & Szabolcs Fogarasi & Ángel Jiménez Álvaro & Ana-Maria Cormos & Calin-Cristian Cormos & Shahriar Amini, 2021. "Techno-Economic Assessment of IGCC Power Plants Using Gas Switching Technology to Minimize the Energy Penalty of CO 2 Capture," Clean Technol., MDPI, vol. 3(3), pages 1-24, August.
  • Handle: RePEc:gam:jcltec:v:3:y:2021:i:3:p:36-617:d:611858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/3/3/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/3/3/36/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szima, Szabolcs & Nazir, Shareq Mohd & Cloete, Schalk & Amini, Shahriar & Fogarasi, Szabolcs & Cormos, Ana-Maria & Cormos, Calin-Cristian, 2019. "Gas switching reforming for flexible power and hydrogen production to balance variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 207-219.
    2. Cloete, Schalk & Hirth, Lion, 2020. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," Energy, Elsevier, vol. 192(C).
    3. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    4. Sorgenfrei, Max & Tsatsaronis, George, 2014. "Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion," Applied Energy, Elsevier, vol. 113(C), pages 1958-1964.
    5. Shi, Bin & Wu, Erdorng & Wu, Wei, 2017. "Novel design of chemical looping air separation process for generating electricity and oxygen," Energy, Elsevier, vol. 134(C), pages 449-457.
    6. Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
    7. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2013. "Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up," Energy, Elsevier, vol. 53(C), pages 221-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    2. Cloete, Schalk & Ruhnau, Oliver & Cloete, Jan Hendrik & Hirth, Lion, 2021. "Blue hydrogen and industrial base products: The future of fossil fuel exporters in a net-zero world," EconStor Preprints 234469, ZBW - Leibniz Information Centre for Economics.
    3. Shi, Bin & Wen, Fang & Wu, Wei, 2020. "Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop," Energy, Elsevier, vol. 200(C).
    4. Cloete, Schalk & Arnaiz del Pozo, Carlos & Jiménez Álvaro, Ángel, 2022. "System-friendly process design: Optimizing blue hydrogen production for future energy systems," Energy, Elsevier, vol. 259(C).
    5. Mishra, Navneet & Bhui, Barnali & Vairakannu, Prabu, 2019. "Comparative evaluation of performance of high and low ash coal fuelled chemical looping combustion integrated combined cycle power generating systems," Energy, Elsevier, vol. 169(C), pages 305-318.
    6. Cloete, Schalk & Hirth, Lion, 2020. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," Energy, Elsevier, vol. 192(C).
    7. Patel, Ismail & Shah, Adil & Shen, Boyang & Wei, Haigening & Hao, Luning & Hu, Jintao & Wang, Qi & Coombs, Tim, 2023. "Stochastic optimisation and economic analysis of combined high temperature superconducting magnet and hydrogen energy storage system for smart grid applications," Applied Energy, Elsevier, vol. 341(C).
    8. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    9. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    10. Levi, Peter G. & Pollitt, Michael G., 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Energy Policy, Elsevier, vol. 87(C), pages 48-59.
    11. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    12. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    13. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    14. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    15. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    16. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    17. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    18. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    19. Sasaki, Takashi & Suzuki, Tomoko & Akasaka, Yasufumi & Takaoka, Masaki, 2017. "Generation efficiency improvement of IGCC with CO2 capture by the application of the low temperature reactive shift catalyst," Energy, Elsevier, vol. 118(C), pages 60-67.
    20. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:3:p:36-617:d:611858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.