IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i17p1861-d1738668.html
   My bibliography  Save this article

Leaf Color Chart-Based Nitrogen Management Affects Rice Enzyme Activities and Maintains Soil Nitrogen Balance

Author

Listed:
  • Jichao Tang

    (School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
    MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
    Wuhan Tanhe International Technology Co., Ltd., Wuhan 430075, China)

  • Wenxuan Zhang

    (School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China)

  • Xi Niu

    (School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China)

  • Chengfang Li

    (MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Cougui Cao

    (MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Dongliang Xiong

    (MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Ying Zhang

    (School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China)

  • Jianhua Qu

    (School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China)

  • Bin Wang

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Tianqi Liu

    (School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
    MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

Real-time nitrogen (N) management based on the leaf color chart (LCC) is considered a potential alternative to traditional farmer practices. However, its physiological mechanisms for enhancing rice N utilization and its effects on paddy field N balance remain unclear. We aimed to elucidate the potential enzymatic mechanisms underlying LCC’s influence on rice N use and quantify the impact of LCC on paddy field N balance. In 2022 and 2023, a single-factor randomized block design experiment was conducted during the rice planting season. Four N treatments: no N (ONF), farmers’ conventional practices + urea [FNR] as the control, LCC + urea [SSNM1], LCC + controlled-release urea [SSNM2] were administered. Rice yield and N uptake were positive correlations with nitrate reductase (NR), glutamine synthetase (GS), glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT) and glutamate dehydrogenase (GDH) activities, which were higher under SSNM1 and SSNM2 compared with FNR, but were negative correlation with proteinase activity. Moreover, SSNM1 and SSNM2 increased rice yield by 9.2% and 9.4%, N uptake by 15.4% and 15.3%, and N use efficiency by 46.9% and 65.0%, and reduced reactive N losses by 46.2% and 66.7%, respectively. The annual net soil N inputs under FNR, SSNM1, and SSNM2 were 12.6, 8.9, and 4.2 kg N ha −1 , respectively. LCC-based N management increased N uptake and rice yield by enhancing the activities of NR, GS, GPT, GOT, and GDH while reducing protease activity. Moreover, LCC maintained soil N supply capacity even with reduced nitrogen fertilizer application.

Suggested Citation

  • Jichao Tang & Wenxuan Zhang & Xi Niu & Chengfang Li & Cougui Cao & Dongliang Xiong & Ying Zhang & Jianhua Qu & Bin Wang & Tianqi Liu, 2025. "Leaf Color Chart-Based Nitrogen Management Affects Rice Enzyme Activities and Maintains Soil Nitrogen Balance," Agriculture, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:17:p:1861-:d:1738668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/17/1861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/17/1861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    2. Jun Sugai & Naoya Takashima & Koki Muto & Takatoki Kaku & Honoka Nakayama & Naomi Asagi & Masakazu Komatsuzaki, 2024. "Effects of Cover Crops on Soil Inorganic Nitrogen and Organic Carbon Dynamics in Paddy Fields," Agriculture, MDPI, vol. 14(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patil, Vikram & Ghosh, Ranjan & Kathuria, Vinish & Farrell, Katharine N., 2020. "Money, Land or self-employment? Understanding preference heterogeneity in landowners’ choices for compensation under land acquisition in India," Land Use Policy, Elsevier, vol. 97(C).
    2. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    3. Godfred Addai & Jungho Suh & Douglas Bardsley & Guy Robinson & Lawrence Guodaar, 2024. "Exploring sustainable development within rural regions in Ghana: A rural web approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3890-3907, August.
    4. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    5. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    6. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    7. Rodríguez del Valle, Adrián & Fernández-Vázquez, Esteban, 2024. "Analyzing market power of the agricultural industry in Asia," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 652-669.
    8. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    9. Hurley, Mason, 2016. "Re-examining Changes in Farm Size Distributions Worldwide Using a Modified Generalized Method of Moments Approach," Master's Theses and Plan B Papers 249287, University of Minnesota, Department of Applied Economics.
    10. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    11. Koolwal, Gayatri B., 2021. "Improving the measurement of rural women's employment: Global momentum and survey priorities," World Development, Elsevier, vol. 147(C).
    12. Manhisse, Nelson & Ogawa, Keiichi, 2024. "Smallholder households and children’s schooling in primary education in Mozambique," International Journal of Educational Development, Elsevier, vol. 105(C).
    13. Yuewen Huo & Songlin Ye & Zhou Wu & Fusuo Zhang & Guohua Mi, 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    14. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    15. Ilia Alomía Herrera & Rose Paque & Michiel Maertens & Veerle Vanacker, 2022. "History of Land Cover Change on Santa Cruz Island, Galapagos," Land, MDPI, vol. 11(7), pages 1-24, July.
    16. Do, Manh Hung & Nguyen, Trung Thanh, 2024. "Impact of crop commercialization on smallholder farmers’ resilience to shocks: Evidence from panel data for rural Southeast Asia," Food Policy, Elsevier, vol. 128(C).
    17. Zhiqi Zheng & Hongbo Zhao & Zhengdao Liu & Jin He & Wenzheng Liu, 2021. "Research Progress and Development of Mechanized Potato Planters: A Review," Agriculture, MDPI, vol. 11(6), pages 1-27, June.
    18. Hung‐Hao Chang & Ashok K. Mishra & Tzong‐Haw Lee, 2019. "A supply‐side analysis of agritourism: Evidence from farm‐level agriculture census data in Taiwan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 521-548, July.
    19. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    20. Regan, Courtney M. & Connor, Jeffery D. & Summers, David M. & Settre, Claire & O’Connor, Patrick J. & Cavagnaro, Timothy R., 2020. "The influence of crediting and permanence periods on Australian forest-based carbon offset supply," Land Use Policy, Elsevier, vol. 97(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:17:p:1861-:d:1738668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.