IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1636-d1480418.html
   My bibliography  Save this article

Coupling Coordination and Spatial–Temporal Evolution of the Water–Land–Ecology System in the North China Plain

Author

Listed:
  • Liang Chen

    (Changji Hui Autonomous Prefecture Water Management Station, Changji 831100, China)

  • Xiaogang Wang

    (Changji Hui Autonomous Prefecture Water Management Station, Changji 831100, China)

  • Mouchao Lv

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Jing Su

    (Changji Hui Autonomous Prefecture Water Management Station, Changji 831100, China)

  • Bo Yang

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

Abstract

Exploring the coordination of agricultural water resources (W), cultivated land (L), and the ecoenvironment (E) system is crucial for sustainable agriculture in the North China Plain (NCP). However, the synergistic effects of this composite system remain unclear. Coupling coordination degrees (CCDs) of 53 cities in the NCP for the years 2011, 2015, and 2020 were evaluated using the TOPSIS model, and the coupling coordination model, combined with the analytic hierarchy process and entropy weight method. The evaluation results were further analyzed to identify obstacle factors. The findings reveal the following: (1) The comprehensive development level showed a fluctuating upward trend, with closeness values ranging from 0.418 to 0.574 in 2020, indicating an improvement of 14.6–52.3% compared to 2011. The coefficient of variation (CV) for each province rose from 12.65% in 2011 to 13.64% and subsequently declined to 9.12% by 2020. (2) Between 2011 and 2020, CCDs of the W–L–E composite system exhibited a consistent upward trend. In 2020, regions with intermediate or better coordination accounted for 34.0%, and were primarily located in Jiangsu Province, the southern part of Anhui Province, the northwestern part of Shandong Province, and the municipalities of Beijing and Tianjin. (3) In 2011 and 2015, significant obstacle factors included the water quality compliance rate and the per capita disposable income of rural residents, although these were not primary obstacles in 2020. The water supply modulus and multiple cropping index were major obstacle factors in 2011, 2015, and 2020. Developing water-appropriate cropping patterns based on regional water resource endowment is the essential path for the sustainable and coordinated development of water, land, and ecology in the NCP.

Suggested Citation

  • Liang Chen & Xiaogang Wang & Mouchao Lv & Jing Su & Bo Yang, 2024. "Coupling Coordination and Spatial–Temporal Evolution of the Water–Land–Ecology System in the North China Plain," Agriculture, MDPI, vol. 14(9), pages 1-16, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1636-:d:1480418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    2. Kaize Zhang & Juqin Shen & Ran He & Bihang Fan & Han Han, 2019. "Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    3. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    5. Ma, Jian & Fan, Zhi-Ping & Huang, Li-Hua, 1999. "A subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 112(2), pages 397-404, January.
    6. Wenzhe Luo & Yanling Jiang & Yuansheng Chen & Zhigang Yu, 2023. "Coupling Coordination and Spatial-Temporal Evolution of Water-Land-Food Nexus: A Case Study of Hebei Province at a County-Level," Land, MDPI, vol. 12(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua Tian & Chenyang Tian & Ruolin Zhang, 2025. "Multi-Objective Optimization and Allocation of Water Resources in Hancheng City Based on NSGA Algorithm and TOPSIS-CCDM Decision-Making Model," Sustainability, MDPI, vol. 17(10), pages 1-29, May.
    2. Hui Yang & Jingye Li & Stefan Sieber & Kaisheng Long, 2025. "Does Digital Village Construction Affect the Sustainable Intensification of Cultivated Land Use? Evidence from Rural China," Agriculture, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yingshan & Fu, Qiang & Singh, Vijay P. & Ji, Yi & Li, Mo & Wang, Yijia, 2023. "Optimization of agricultural soil and water resources under fuzzy and random uncertainties: Synergy and trade-off between equity-based economic benefits, nonpoint pollution and water use efficiency," Agricultural Water Management, Elsevier, vol. 281(C).
    2. Xu, Xiaozhan, 2004. "A note on the subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 156(2), pages 530-532, July.
    3. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Mahdi Mahdavimanshadi & Neng Fan, 2025. "Multistage Stochastic Optimization for Semi-arid Farm Crop Rotation and Water Irrigation Scheduling Under Drought Scenarios," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 310-333, June.
    5. Cheng Peng & Xunbo Wu & Yelin Fu & Kin Keung Lai, 2017. "Alternative approaches to constructing composite indicators: an application to construct a Sustainable Energy Index for APEC economies," Operational Research, Springer, vol. 17(3), pages 747-759, October.
    6. Wang, Taishan & Zhang, Junlong & You, Li & Zeng, Xueting & Ma, Yuan & Li, Yongping & Huang, Guohe, 2023. "Optimal design of two-dimensional water trading considering hybrid “three waters”-government participation for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Xin Huang & Juqin Shen & Fuhua Sun & Lunyan Wang & Pengchao Zhang & Yu Wan, 2023. "Study on the Spatial and Temporal Distribution of the High–Quality Development of Urbanization and Water Resource Coupling in the Yellow River Basin," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    8. Wang, Yujie & Chen, Hong & Long, Ruyin & Liu, Bei & Jiang, Shiyan & Yang, Xingxing & Yang, Menghua, 2021. "Evaluating green development level of mineral resource-listed companies: Based on a “dark green” assessment framework," Resources Policy, Elsevier, vol. 71(C).
    9. repec:ers:journl:v:xxiv:y:2021:i:2b:p:328-362 is not listed on IDEAS
    10. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Feng, Jianghong & Xu, Su Xiu & Xu, Gangyan & Cheng, Huibing, 2022. "An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Bakhshandeh, Esmaeil & Jamali, Mohsen & Emadi, Mostafa & Francaviglia, Rosa, 2022. "Greenhouse gas emissions and financial analysis of rice paddy production scenarios in northern Iran," Agricultural Water Management, Elsevier, vol. 272(C).
    13. Marianela Carrillo, 2022. "Measuring Progress towards Sustainability in the European Union within the 2030 Agenda Framework," Mathematics, MDPI, vol. 10(12), pages 1-23, June.
    14. Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
    15. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    16. Daxue Kan & Wenqing Yao & Xia Liu & Lianju Lyu & Weichiao Huang, 2023. "Study on the Coordination of New Urbanization and Water Ecological Civilization and Its Driving Factors: Evidence from the Yangtze River Economic Belt, China," Land, MDPI, vol. 12(6), pages 1-24, June.
    17. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    18. Razieh Haddad & Sajad Najafi Marghmaleki & Hamid Kardan Moghaddam & Mehdi Mofidi & Mohammad Mirzavand & Saman Javadi, 2025. "Improving the management of agricultural water resources to provide Gavkhuni wetland ecological water right in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3549-3572, February.
    19. Juan Carlos Pérez-Mesa & Francisco Javier Pérez-Mesa & Juan José Tapia-León & Diego Luis Valera, 2022. "Scheduling vegetable sales to supermarkets in Europe: The tomato case," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 403-412.
    20. Yang Peng & Changming Ji & Roy Gu, 2014. "A Multi-Objective Optimization Model for Coordinated Regulation of Flow and Sediment in Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4019-4033, September.
    21. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1636-:d:1480418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.