IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p285-d1336767.html
   My bibliography  Save this article

Ability of Nutrient Management and Molecular Physiology Advancements to Overcome Abiotic Stress: A Study on Sub-Saharan African Crops

Author

Listed:
  • Koffi Pacome Kouame

    (Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan)

  • Raj Kishan Agrahari

    (Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan)

  • Noren Singh Konjengbam

    (College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam 793103, India)

  • Hiroyuki Koyama

    (Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan)

  • Yuriko Kobayashi

    (Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan)

Abstract

Abiotic stress is a major cause of the declining crop yield worldwide, especially in tropical agricultural areas. Meeting the global food demand has become a serious challenge, especially in tropical areas, because of soil acidity, Al and Fe toxicity, drought and heat stress, and climate change. In this article, we reviewed several research and review papers from Google Scholar to list the different solutions available for the mitigation of abiotic stress, especially in tropical regions where several major crops, such as maize, sorghum, wheat, rice, soybean, and millet, are affected by abiotic stress and fertilizer input. In particular, Sub-Saharan Africa (SSA) has been affected by the low use of fertilizers owing to their high cost. Therefore, soil and plant researchers and farmers have developed many techniques to mitigate the effects of stress and improve the crop yield based on the agroecological zone and crop type. Nutrient management using chemical fertilizers alone or in combination with organic crops is a strategy recommended to cope with abiotic stress and increase the crop yield, particularly in developing countries. Notably, integrated soil fertility management has been effective in semi-arid areas under drought and heat stress and in subhumid and humid areas with high soil acidity and Fe toxicity in Africa. Recent advances in the molecular physiology of various crops considered a staple food in SSA have facilitated the breeding of transgenic tolerant plants with high yield. However, the feasibility and implementation of this technique in the African continent and most tropical developing countries are major issues that can be solved via adequate subsidies and support to farmers. This review can aid in the development of novel strategies to decrease hunger and food insecurity in SSA.

Suggested Citation

  • Koffi Pacome Kouame & Raj Kishan Agrahari & Noren Singh Konjengbam & Hiroyuki Koyama & Yuriko Kobayashi, 2024. "Ability of Nutrient Management and Molecular Physiology Advancements to Overcome Abiotic Stress: A Study on Sub-Saharan African Crops," Agriculture, MDPI, vol. 14(2), pages 1-21, February.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:285-:d:1336767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Buettner, 2020. "World Population Prospects – A Long View," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 9-27.
    2. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    3. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    4. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    5. Zuzana Fuksová & Iveta Bošková & Jana Hlaváčková & Marek Novák, 2025. "The economic aspects of organic farms selling their products to organic or conventional market," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 71(4), pages 218-227.
    6. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    7. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    8. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    9. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    10. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    11. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    12. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    13. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    14. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    15. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umar Farooq & Muhammad Umair, 2020. "Cost And Profitability Analysis Of Cherry Production: The Case Study Of District Quetta, Pakistan," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 74-80, June.
    16. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    17. I. P. Sapinas & L. K. Abbott, 2021. "Soil Fertility Management Based on Certified Organic Agriculture Standards - a Review," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 1-1, December.
    18. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    19. Khalid Butti Al Shamsi & Antonio Compagnoni & Giuseppe Timpanaro & Salvatore Luciano Cosentino & Paolo Guarnaccia, 2018. "A Sustainable Organic Production Model for “Food Sovereignty” in the United Arab Emirates and Sicily-Italy," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    20. ZaDarreyal Wiggins & Dilip Nandwani, 2021. "Innovations of Organic Agriculture, Challenges and Organic Certification in the United States," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(3), pages 1-50, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:285-:d:1336767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.