IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p318-d755684.html
   My bibliography  Save this article

Machine Learning Approach to Predict Air Temperature and Relative Humidity inside Mechanically and Naturally Ventilated Duck Houses: Application of Recurrent Neural Network

Author

Listed:
  • Sang-yeon Lee

    (Department of Rural Systems Engineering, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanakno, Gwanakgu, Seoul 08826, Korea)

  • In-bok Lee

    (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Global Smart Farm Convergence Major, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanakno, Gwanakgu, Seoul 08826, Korea
    Research Institute of Green Eco Engineering, Institute of Green Bio Science and Technology, Seoul National University, 1477 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun 25354, Korea)

  • Uk-hyeon Yeo

    (Agriculture, Animal & Aquaculture Intelligence Research Center, Electronics and Telecommunications Research Institute, 218 Gajeongno, Yuseong-gu, Daejeon 305-700, Korea)

  • Jun-gyu Kim

    (Department of Rural Systems Engineering, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanakno, Gwanakgu, Seoul 08826, Korea)

  • Rack-woo Kim

    (Department of Smart Farm Engineering, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan-eup, Yesan-gun 32439, Korea)

Abstract

The duck industry ranks sixth as one of the fastest-growing major industries for livestock production in South Korea. However, there are few studies quantitatively predicting the internal thermal and moisture environment of duck houses. In this study, high-accuracy recurrent neural network (RNN) models were used to predict the internal air temperature and relative humidity of mechanically and naturally ventilated duck houses. The models were developed according to the type of duck houses, seasons, and environmental variables by learning the monitoring data of the internal and external environments. The optimal sequence length of learning data for the development of the RNN model was selected as 120 min. As a result of the validation, both air temperature and relative humidity could be accurately predicted within 1% error. In addition, simplified RNN models were additionally developed by learning only from the data of external air temperature, relative humidity, and duck weight, which are relatively easy to acquire at the farms. The accuracy of the simplified RNN models was similar to the basic model for predicting the internal air temperature and relative humidity of duck houses in real time. In the future, for the convergence of information and communications technologies (ICTs) and application of smart farms in duck houses, the RNN models of duck houses developed in this study can be applied to predict and control the internal environments of duck houses using the model predictive control (MPC) technique.

Suggested Citation

  • Sang-yeon Lee & In-bok Lee & Uk-hyeon Yeo & Jun-gyu Kim & Rack-woo Kim, 2022. "Machine Learning Approach to Predict Air Temperature and Relative Humidity inside Mechanically and Naturally Ventilated Duck Houses: Application of Recurrent Neural Network," Agriculture, MDPI, vol. 12(3), pages 1-19, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:318-:d:755684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    2. Hu, Qinghua & Zhang, Rujia & Zhou, Yucan, 2016. "Transfer learning for short-term wind speed prediction with deep neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 83-95.
    3. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-gyu Kim & Sang-yeon Lee & In-bok Lee, 2023. "The Development of an LSTM Model to Predict Time Series Missing Data of Air Temperature inside Fattening Pig Houses," Agriculture, MDPI, vol. 13(4), pages 1-18, March.
    2. Hang Yin & Zeyu Wu & Junchao Wu & Junjie Jiang & Yalin Chen & Mingxuan Chen & Shixuan Luo & Lijun Gao, 2023. "A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    3. Qiongyi Cheng & Hui Wang & Xin Xu & Tengfei He & Zhaohui Chen, 2024. "Indoor Thermal Comfort Sector: A Review of Detection and Control Methods for Thermal Environment in Livestock Buildings," Sustainability, MDPI, vol. 16(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    2. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    3. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    4. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    7. Mahmoud Mahfouz & Tucker Balch & Manuela Veloso & Danilo Mandic, 2021. "Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets," Papers 2110.01325, arXiv.org, revised Oct 2021.
    8. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    9. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    10. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    11. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    12. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    13. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    14. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    15. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    16. Chanjuan Liu & Jinmiao Cong & Tianhao Zhao & Enqiang Zhu, 2023. "Improving Agent Decision Payoffs via a New Framework of Opponent Modeling," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    17. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    18. Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    20. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:318-:d:755684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.